В каких клеточных включениях протекают энергетические процессы

Для протекания всех многочисленных процессов в клетке и для функционирования всего организма в целом необходимо потреблять определённое количество энергии. Основным источником энергии для живых организмов, как и для большинства процессов на планете, является солнечная радиация. Потребление энергии живыми организмами начинается с поглощения растениями части видимого электромагнитного излучения с длиной волны от 400 до 750 нм.

За счёт поглощённой световой энергии растения осуществляют фотосинтез, который представляет собой сложную многоступенчатую сборку органических молекул из различных неорганических веществ. В очень упрощенном виде фотосинтез может быть представлен в виде химической реакции: 6CO2 + 6H2O → C6H12O6 + 6O2

Из углекислого газа и воды образуется органическое вещество (глюкоза) и кислород. Суть процесса состоит в том, что атомы водорода отрываются от молекул воды и переносятся на углерод, превращая его из минеральной (окисленной) формы в восстановленную органическую. Энергия при этом оказывается запасённой в виде энергии химических связей атомов органических молекул и может в дальнейшем использоваться самими растениями, а также всеми организмами, нуждающимися в готовой органической пище.

Фотосинтез протекает в специальных двумембранных органоидах клеток растений – хлоропластах (рис.3.7).

Внутренняя мембрана хлоропластов образует складчатые структуры, в состав которых входят молекулы зелёного пигментахлорофилла и многочисленные ферменты, участвующие в процессе фотосинтеза. Часть такой мембраны схематично изображена на рис.3.8.

Фотосинтез может быть представлен в виде световой и темновой стадий. Световая стадия начинается с попадания кванта света в молекулу хлрофилла (Хл) и выбивания электрона (ē), который начинает перемещаться по цепочке ферментов, постепенно теряя полученную от фотона энергию.

Хлорофилл, потерявший электрон, отрывает его от молекул воды с образованием радикалов ОН 0 . Неустойчивые радикалы быстро регенерируют в молекулы воды и молекулярный кислород О2. Процесс разложения воды с образованием кислорода называется фотолизом.

Оставшийся без электрона ион водорода Н + (протон) под действием электрических сил начинает перемещаться вслед за движущимся электроном и в конечном итоге соединяется с молекулой фермента-восстановителя. Восстановитель далее используется в темновых реакциях для восстановления углерода.

Некоторые ферментные комплексы, по которым движется электрон, конформируются энергией его движения таким образом, что работают как ионные насосы, перекачивающие протоны с одной стороны мембраны на другую. Возникает мембранный потенциал, за счёт которого работает ферментный комплекс АТФ-синтетаза. Этот комплекс похож по строению на рассмотренную выше АТФ-азу (п.3.10, рис.3.6), но выполняет противоположную функцию синтеза АТФ из АДФ и фосфата. АТФ-синтетаза имеет протонный канал, по которому ионы водорода под действием мембранного потенциала проскакивают обратно, а энергия проскока используется для синтеза АТФ. Накопленная таким образом энергия макроэргических связей затем используется в темновых реакциях фотосинтеза.

Мембраны, подобные внутренним мембранам хлоропластов, осуществляющим синтез АТФ, называются энергообразующими в отличие от остальных мембран клетки, являющихся энергопотребляющими.

Способы питания, подобные фотосинтезу, при которых органические вещества синтезируются из неорганических, называются автотрофным питанием, а организмы, использующие такое питание, называются автотрофами. Растения, в частности, являются фотавтотрофами.

Вторым основным способом получения энергии, которым пользуются абсолютно все организмы, является дыхание. В этом случае энергия получается путём окислительной деструкции готовых органических веществ с превращением их в минеральные. Такой способ питания называется гетеротрофным, а организмы, живущие исключительно за счёт дыхания, называются гетеротрофами. За счёт дыхания живут и все незелёные ткани растений (внутренние ткани стволов, корни, клубни, луковицы), а также зелёные ткани в периоды отсутствия света.

Дыхание – это также сложный многоступенчатый процесс, который в упрощенном виде можно записать как процесс, обратный фотосинтезу:

В такой записи процесс подобен горению (соединению кислорода с органическим веществом). В отличие от горения дыхание не приводит к сильному разогреву и воспламенению, поскольку энергия в многоступенчатом ферментативном процессе выделяется постепенно, небольшими порциями и накапливается в молекулах АТФ, лишь частично превращаясь в тепло. КПД дыхания составляет приблизительно 56%

В дыхании принято выделять три стадии: подготовительный этап, бескислородное (анаэробное) дыхание и кислородное дыхание.

Подготовительный этап представляет собой гидролитическое расщепление полимерных молекул (крахмал, гликоген) до глюкозы. Энергии при этом выделяется мало и АТФ не образуется. Анаэробное дыхание является разложением молекулы глюкозы на две трёхуглеродные молекулы пировиноградной кислоты (ПВК). При этом на одну распавшуюся молекулу глюкозы (или 2ПВК) образуется 6 молекул АТФ. Эта стадия является основой всех процессов брожения (спиртового, уксуснокислого, молочнокислого и др.). При брожении образуются различные низкомолекулярные органические продукты неполного разложения глюкозы. Исключительно за счёт анаэробного дыхания и брожения живут многие микроорганизмы и некоторые анаэробные многоклеточные животные, особенно внутренние паразиты, испытывающие недостаток кислорода.

У аэробных организмов ПВК подвергается дальнейшему разложению с участием кислорода. Кислородная стадия протекает в специальных органоидах клеток – митохондриях. При этом расщепление 2 молекул ПВК на 6 молекул углекислого газа приводит к образованию 30 молекул АТФ. Таким образом, полный энергетическиё выход кислородного дыхания, включая анаэробную стадию, составляет 36 молекул АТФ на одну молекулу глюкозы.

Митохондрии (рис.3.9), как и хлоропласты, представляют собой двумембранные органоиды, внутренняя мембрана которых также образует складки и является энергообразующей. Участок такой мембраны показан на рис. 3.10. В мембрану встроены ферментные комплексы, переносящие электроны и протоны от молекулы органического вещества (RH) на кислород. При этом некоторые ферменты также используют энергию переноса электрона для создания мембранного потенциала, за счёт которого с помощью АТФ-ситетазы образуется АТФ.

Ещё одним способом питания, который не так широко распространён, является хемосинтез, или хемоавтотрофный способ питания. Энергия при этом способе питания получается за счёт окисления неорганических веществ и используется для синтеза органических веществ из минеральных. Слабая распространённость этого способа обусловлена тем, что современная атмосфера с высоким содержанием кислорода является окислительной, большинство неорганических веществ находятся в соединении с кислородом и не могут служить источником энергии. Хемоавтотрофами являются некоторые виды бактерий, окисляющих серу (серобактерии), железо (железобактерии) и ряд других. Общей чертой хемоавтотрофов с фотоавтотрофами является использование для питания только минеральных веществ. А сходство с гетеротрофами обусловлено тем, что источником энергии является процесс окисления.

источник

Для протекания всех многочисленных процессов в клетке и для функционирования всего организма в целом необходимо потреблять определённое количество энергии. Основным источником энергии для живых организмов, как и для большинства процессов на планете, является солнечная радиация. Потребление энергии живыми организмами начинается с поглощения растениями части видимого электромагнитного излучения с длиной волны от 400 до 750 нм.

За счёт поглощённой световой энергии растения осуществляют фотосинтез, который представляет собой сложную многоступенчатую сборку органических молекул из различных неорганических веществ. В очень упрощенном виде фотосинтез может быть представлен в виде химической реакции: 6CO2 + 6H2O → C6H12O6 + 6O2

Из углекислого газа и воды образуется органическое вещество (глюкоза) и кислород. Суть процесса состоит в том, что атомы водорода отрываются от молекул воды и переносятся на углерод, превращая его из минеральной (окисленной) формы в восстановленную органическую. Энергия при этом оказывается запасённой в виде энергии химических связей атомов органических молекул и может в дальнейшем использоваться самими растениями, а также всеми организмами, нуждающимися в готовой органической пище.

Фотосинтез протекает в специальных двумембранных органоидах клеток растений – хлоропластах(рис.3.7).

Внутренняя мембрана хлоропластов образует складчатые структуры, в состав которых входят молекулы зелёного пигмента хлорофилла и многочисленные ферменты, участвующие в процессе фотосинтеза. Часть такой мембраны схематично изображена на рис.3.8.

Фотосинтез может быть представлен в виде световой и темновой стадий. Световая стадия начинается с попадания кванта света в молекулу хлрофилла (Хл) и выбивания электрона (ē), который начинает перемещаться по цепочке ферментов, постепенно теряя полученную от фотона энергию.

Хлорофилл, потерявший электрон, отрывает его от молекул воды с образованием радикалов ОН 0 . Неустойчивые радикалы быстро регенерируют в молекулы воды и молекулярный кислород О2. Процесс разложения воды с образованием кислорода называется фотолизом.

Оставшийся без электрона ион водорода Н + (протон) под действием электрических сил начинает перемещаться вслед за движущимся электроном и в конечном итоге соединяется с молекулой фермента-восстановителя. Восстановитель далее используется в темновых реакциях для восстановления углерода.

Некоторые ферментные комплексы, по которым движется электрон, конформируются энергией его движения таким образом, что работают как ионные насосы, перекачивающие протоны с одной стороны мембраны на другую. Возникает мембранный потенциал, за счёт которого работает ферментный комплекс АТФ-синтетаза. Этот комплекс похож по строению на рассмотренную выше АТФ-азу (п.3.10, рис.3.6), но выполняет противоположную функцию синтеза АТФ из АДФ и фосфата. АТФ-синтетаза имеет протонный канал, по которому ионы водорода под действием мембранного потенциала проскакивают обратно, а энергия проскока используется для синтеза АТФ. Накопленная таким образом энергия макроэргических связей затем используется в темновых реакциях фотосинтеза.

Мембраны, подобные внутренним мембранам хлоропластов, осуществляющим синтез АТФ, называются энергообразующими в отличие от остальных мембран клетки, являющихся энергопотребляющими.

Способы питания, подобные фотосинтезу, при которых органические вещества синтезируются из неорганических, называются автотрофным питанием, а организмы, использующие такое питание, называются автотрофами. Растения, в частности, являютсяфотавтотрофами.

Вторым основным способом получения энергии, которым пользуются абсолютно все организмы, является дыхание. В этом случае энергия получается путём окислительной деструкции готовых органических веществ с превращением их в минеральные. Такой способ питания называется гетеротрофным, а организмы, живущие исключительно за счёт дыхания, называются гетеротрофами. За счёт дыхания живут и все незелёные ткани растений (внутренние ткани стволов, корни, клубни, луковицы), а также зелёные ткани в периоды отсутствия света.

Дыхание – это также сложный многоступенчатый процесс, который в упрощенном виде можно записать как процесс, обратный фотосинтезу:

В такой записи процесс подобен горению (соединению кислорода с органическим веществом). В отличие от горения дыхание не приводит к сильному разогреву и воспламенению, поскольку энергия в многоступенчатом ферментативном процессе выделяется постепенно, небольшими порциями и накапливается в молекулах АТФ, лишь частично превращаясь в тепло. КПД дыхания составляет приблизительно 56%

В дыхании принято выделять три стадии: подготовительный этап, бескислородное (анаэробное) дыхание и кислородное дыхание.

Подготовительный этап представляет собой гидролитическое расщепление полимерных молекул (крахмал, гликоген) до глюкозы. Энергии при этом выделяется мало и АТФ не образуется. Анаэробное дыхание является разложением молекулы глюкозы на две трёхуглеродные молекулы пировиноградной кислоты (ПВК). При этом на одну распавшуюся молекулу глюкозы (или 2ПВК) образуется 6 молекул АТФ. Эта стадия является основой всех процессов брожения (спиртового, уксуснокислого, молочнокислого и др.). При брожении образуются различные низкомолекулярные органические продукты неполного разложения глюкозы. Исключительно за счёт анаэробного дыхания и брожения живут многие микроорганизмы и некоторые анаэробные многоклеточные животные, особенно внутренние паразиты, испытывающие недостаток кислорода.

У аэробных организмов ПВК подвергается дальнейшему разложению с участием кислорода. Кислородная стадия протекает в специальных органоидах клеток – митохондриях. При этом расщепление 2 молекул ПВК на 6 молекул углекислого газа приводит к образованию 30 молекул АТФ. Таким образом, полный энергетическиё выход кислородного дыхания, включая анаэробную стадию, составляет 36 молекул АТФ на одну молекулу глюкозы.

Митохондрии (рис.3.9), как и хлоропласты, представляют собой двумембранные органоиды, внутренняя мембрана которых также образует складки и является энергообразующей. Участок такой мембраны показан на рис. 3.10. В мембрану встроены ферментные комплексы, переносящие электроны и протоны от молекулы органического вещества (RH) на кислород. При этом некоторые ферменты также используют энергию переноса электрона для создания мембранного потенциала, за счёт которого с помощью АТФ-ситетазы образуется АТФ.

Ещё одним способом питания, который не так широко распространён, является хемосинтез, или хемоавтотрофный способ питания. Энергия при этом способе питания получается за счёт окисления неорганических веществ и используется для синтеза органических веществ из минеральных. Слабая распространённость этого способа обусловлена тем, что современная атмосфера с высоким содержанием кислорода является окислительной, большинство неорганических веществ находятся в соединении с кислородом и не могут служить источником энергии. Хемоавтотрофами являются некоторые виды бактерий, окисляющих серу (серобактерии), железо (железобактерии) и ряд других. Общей чертой хемоавтотрофов с фотоавтотрофами является использование для питания только минеральных веществ. А сходство с гетеротрофами обусловлено тем, что источником энергии является процесс окисления.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Для протекания всех многочисленных процессов в клетке и для функционирования всего организма в целом необходимо потреблять определённое количество энергии. Основным источником энергии для живых организмов, как и для большинства процессов на планете, является солнечная радиация. Потребление энергии живыми организмами начинается с поглощения растениями части видимого электромагнитного излучения с длиной волны от 400 до 750 нм.

За счёт поглощённой световой энергии растения осуществляют фотосинтез, который представляет собой сложную многоступенчатую сборку органических молекул из различных неорганических веществ. В очень упрощенном виде фотосинтез может быть представлен в виде химической реакции: 6CO2 + 6H2O → C6H12O6 + 6O2

Из углекислого газа и воды образуется органическое вещество (глюкоза) и кислород. Суть процесса состоит в том, что атомы водорода отрываются от молекул воды и переносятся на углерод, превращая его из минеральной (окисленной) формы в восстановленную органическую. Энергия при этом оказывается запасённой в виде энергии химических связей атомов органических молекул и может в дальнейшем использоваться самими растениями, а также всеми организмами, нуждающимися в готовой органической пище.

Фотосинтез протекает в специальных двумембранных органоидах клеток растений – хлоропластах (рис.3.7).

Внутренняя мембрана хлоропластов образует складчатые структуры, в состав которых входят молекулы зелёного пигмента хлорофилла и многочисленные ферменты, участвующие в процессе фотосинтеза. Часть такой мембраны схематично изображена на рис.3.8.

Фотосинтез может быть представлен в виде световой и темновой стадий. Световая стадия начинается с попадания кванта света в молекулу хлрофилла (Хл) и выбивания электрона (ē), который начинает перемещаться по цепочке ферментов, постепенно теряя полученную от фотона энергию.

Хлорофилл, потерявший электрон, отрывает его от молекул воды с образованием радикалов ОН0. Неустойчивые радикалы быстро регенерируют в молекулы воды и молекулярный кислород О2. Процесс разложения воды с образованием кислорода называется фотолизом.

Читайте также:  Энтерол рлс инструкция по применению

Оставшийся без электрона ион водорода Н+ (протон) под действием электрических сил начинает перемещаться вслед за движущимся электроном и в конечном итоге соединяется с молекулой фермента-восстановителя. Восстановитель далее используется в темновых реакциях для восстановления углерода.

Некоторые ферментные комплексы, по которым движется электрон, конформируются энергией его движения таким образом, что работают как ионные насосы, перекачивающие протоны с одной стороны мембраны на другую. Возникает мембранный потенциал, за счёт которого работает ферментный комплекс АТФ-синтетаза. Этот комплекс похож по строению на рассмотренную выше АТФ-азу (п.3.10, рис.3.6), но выполняет противоположную функцию синтеза АТФ из АДФ и фосфата. АТФ-синтетаза имеет протонный канал, по которому ионы водорода под действием мембранного потенциала проскакивают обратно, а энергия проскока используется для синтеза АТФ. Накопленная таким образом энергия макроэргических связей затем используется в темновых реакциях фотосинтеза.

Мембраны, подобные внутренним мембранам хлоропластов, осуществляющим синтез АТФ, называются энергообразующими в отличие от остальных мембран клетки, являющихся энергопотребляющими.

Способы питания, подобные фотосинтезу, при которых органические вещества синтезируются из неорганических, называются автотрофным питанием, а организмы, использующие такое питание, называются автотрофами. Растения, в частности, являются фотавтотрофами.

Вторым основным способом получения энергии, которым пользуются абсолютно все организмы, является дыхание. В этом случае энергия получается путём окислительной деструкции готовых органических веществ с превращением их в минеральные. Такой способ питания называется гетеротрофным, а организмы, живущие исключительно за счёт дыхания, называются гетеротрофами. За счёт дыхания живут и все незелёные ткани растений (внутренние ткани стволов, корни, клубни, луковицы), а также зелёные ткани в периоды отсутствия света.

Дыхание – это также сложный многоступенчатый процесс, который в упрощенном виде можно записать как процесс, обратный фотосинтезу:

В такой записи процесс подобен горению (соединению кислорода с органическим веществом). В отличие от горения дыхание не приводит к сильному разогреву и воспламенению, поскольку энергия в многоступенчатом ферментативном процессе выделяется постепенно, небольшими порциями и накапливается в молекулах АТФ, лишь частично превращаясь в тепло. КПД дыхания составляет приблизительно 56%

В дыхании принято выделять три стадии: подготовительный этап, бескислородное (анаэробное) дыхание и кислородное дыхание.

Подготовительный этап представляет собой гидролитическое расщепление полимерных молекул (крахмал, гликоген) до глюкозы. Энергии при этом выделяется мало и АТФ не образуется. Анаэробное дыхание является разложением молекулы глюкозы на две трёхуглеродные молекулы пировиноградной кислоты (ПВК). При этом на одну распавшуюся молекулу глюкозы (или 2ПВК) образуется 6 молекул АТФ. Эта стадия является основой всех процессов брожения (спиртового, уксуснокислого, молочнокислого и др.). При брожении образуются различные низкомолекулярные органические продукты неполного разложения глюкозы. Исключительно за счёт анаэробного дыхания и брожения живут многие микроорганизмы и некоторые анаэробные многоклеточные животные, особенно внутренние паразиты, испытывающие недостаток кислорода.

У аэробных организмов ПВК подвергается дальнейшему разложению с участием кислорода. Кислородная стадия протекает в специальных органоидах клеток – митохондриях. При этом расщепление 2 молекул ПВК на 6 молекул углекислого газа приводит к образованию 30 молекул АТФ. Таким образом, полный энергетическиё выход кислородного дыхания, включая анаэробную стадию, составляет 36 молекул АТФ на одну молекулу глюкозы.

Митохондрии (рис.3.9), как и хлоропласты, представляют собой двумембранные органоиды, внутренняя мембрана которых также образует складки и является энергообразующей. Участок такой мембраны показан на рис. 3.10. В мембрану встроены ферментные комплексы, переносящие электроны и протоны от молекулы органического вещества (RH) на кислород. При этом некоторые ферменты также используют энергию переноса электрона для создания мембранного потенциала, за счёт которого с помощью АТФ-ситетазы образуется АТФ.

Ещё одним способом питания, который не так широко распространён, является хемосинтез, или хемоавтотрофный способ питания. Энергия при этом способе питания получается за счёт окисления неорганических веществ и используется для синтеза органических веществ из минеральных. Слабая распространённость этого способа обусловлена тем, что современная атмосфера с высоким содержанием кислорода является окислительной, большинство неорганических веществ находятся в соединении с кислородом и не могут служить источником энергии. Хемоавтотрофами являются некоторые виды бактерий, окисляющих серу (серобактерии), железо (железобактерии) и ряд других. Общей чертой хемоавтотрофов с фотоавтотрофами является использование для питания только минеральных веществ. А сходство с гетеротрофами обусловлено тем, что источником энергии является процесс окисления.

источник

Как уже говорилось ранее в разделе 1.1.2, естественно протекающие в природе процессы сопровождаются увеличением энтропии, то есть беспорядка. Живая же система (клетка или организм в целом) служит примером области пространства, ограниченной ее мембраной, где в течение длительного периода жизни, в результате целенаправленной созидательной деятельности энтропия не повышается.

Попробуем ориентировочно оценить, сколько энергии заключено в клетке. Если допустить, что у человека с массой тела 80 кг клеточная масса достигает 80%, и его организм состоит из 10 14 клеток, то средняя масса 1 клетки составит:

(80 · 0,8) ÷ 10 14 = 64 · 10 -14 кг

Если теперь воспользоваться формулой Эйнштейна E = mC 2 для определения собственной энергии покоящегося тела, то можно подсчитать, что энергия клетки равна:

E =(64 · 10 -14 ) · (3 · 10 8 ) 2 = 5,76 · 10 4 Дж

Чтобы представить масштабы этой энергии, можно напомнить, что при сгорании 1 кг каменного угля выделяется 27·10 6 Дж. То есть в клетке заключена энергия, эквивалентная энергии, выделяемой при сгорании 2 г угля.

Описывая энергетические процессы, мы прежде всего должны коснуться химической энергии, заключенной во внутриклеточных соединениях. В каждом химическом соединении состоящем из определенного числа атомов, заключено некоторое количество энергии, определяемое его структурой. В химической реакции структура соединений изменяется, и при расщеплении связей высвобождается энергия, которая была в свое время затрачена на их образование. Совокупность окислительно-восстановительных реакций в клетке, протекающих с участием молекулярного кислорода и сопровождающихся запасанием энергии, называется клеточным дыханием. Клеточное дыхание является важнейшей частью обмена веществ и энергии в организме и отличается от других химических процессов, протекающих с поглощением кислорода (например окисление жиров), созданием запаса энергии в виде АТФ.

В живой клетке основными источниками энергии служат вещества, поступающие из окружающей среды, – углеводы (сахара), белки, жиры, расщепленные в процессе пищеварения до более простых соединений. Эти соединения вступают в реакцию с кислородом и окисляются до воды и углекислого газа. При этом высвобождается энергия. Типичное количество высвобождающейся энергии составляет 20 000 Дж на 1 г углеводов. Почти вдвое больше химической энергии на 1 г запасено в жире животных.

Вот почему нам необходимо потреблять вещества, обладающие высоким качеством энергии. В процессе их расщепления, высвобождается энергия, необходимая клеткам для жизнедеятельности и выполнения специальных функций. На Земле высокое качество энергии в веществах, которые мы потребляем, первоначально обусловлено Солнцем, температура которого столь высока, что запасается энергия, характеризующаяся очень низкой энтропией. Природа устроила так, что эта энергия, проливающаяся в виде излучения, сначала поглощается растениями в процессе фотосинтеза, и затем процесс передачи и преобразования энергии продолжается в организмах животных.

Применительно к химической реакции можно сказать, что она будет протекать только тогда, когда энергия, заключенная в продуктах реакции меньше, чем в исходных вещества. Но это не означает, что если в ходе реакции энергия высвобождается, то она обязательно произойдет. Многие потенциально энергетически выгодные реакции в природе не происходят, на их пути стоит некий барьер. Иначе бы все вещества, способные вступать в реакции, сразу бы в них вступили. Например, превращение глюкозы в воду и углекислый газ (то есть горение) – энергетически очень выгодный процесс:

однако сахар на воздухе вполне устойчив. Что же это за барьер, не дающий исчезнуть в пламени всем горючим материалам на Земле?

Представьте, что по наклонной плоскости катится мяч. Даже не зная законов физики, можно утверждать, что он будет катиться, пока сохраняется наклон. Теперь допустим, что на его пути оказалась лунка, мяч закатился в нее и застрял там. Он готов катиться дальше, но, чтобы продолжить движение, ему надо сообщить дополнительную энергию, причем тем большую, чем глубже лунка. Так и в химических, в том числе протекающих в живых организмах (биохимических), реакциях. Исходное соединение – это, образно говоря, “мяч в лунке”, пока не сообщишь ему определенную энергию, в реакцию оно не вступит, даже если эта реакция энергетически выгодна. Энергия, которую надо дополнительно сообщить химической системе, чтобы “запустить” реакцию, называется энергией активации для данной реакции и служит своего рода энергетическим гребнем, который надо преодолеть. В некатализируемых реакциях источником энергии активации служат столкновения между молекулами. Если соударяемые молекулы должным образом сориентированы, и столкновение достаточно сильное, есть шанс, что они вступят в реакцию. Понятно, почему химики для ускорения реакций нагревают колбы: при повышении температуры скорость теплового движения и частота соударений возрастают. Но в условиях человеческого тела клетку не нагреешь, для нее это недопустимо. А реакции идут, при этом со скоростями, недостижимыми при проведении их в пробирке. Здесь работает еще одно изобретение природы – ферменты, о которых мы упоминали ранее.

Как уже говорилось, при химических превращениях самопроизвольно могут протекать те реакции, в которых энергия, заключенная в продуктах реакции меньше, чем в исходных веществах. Для остальных реакций необходим приток энергии извне. Самопроизвольную реакцию можно сравнить с падающим грузом. Первоначально покоящийся груз стремится падать вниз, понижая тем самым свою потенциальную энергию. Так и реакция, будучи инициирована, стремится протекать в сторону образования веществ с меньшим запасом энергии. Такой процесс, в ходе которого может совершаться работа, называют спонтанным. Но если определенным образом соединить два груза, то более тяжелый, падая, будет поднимать более легкий. И в химических, в особенности в биохимических, процессах реакция, протекающая с выделением энергии, может вызвать протекание связанной с ней реакции, требующей притока энергии извне. Такие реакции называют сопряженными. В живых организмах сопряженные реакции очень распространены, и именно их протекание обусловливает все тончайшие явления, сопутствующие жизни и сознанию. Падающий “тяжелый груз” вызывает поднятие другого, более легкого, но на меньшую величину. Питаясь, мы поглощаем вещества с высоким качеством энергии, обусловленным Солнцем, которые затем в организме распадаются и, в конечном счете, выделяются из него, но при этом успевают высвободить энергию в количестве, достаточном для обеспечения процесса, называемого жизнью.

В клетке основным энергетическим посредником, то есть “ведущим колесом” жизни, является аденозинтрифосфат (АТФ). Чем интересно это соединение? С биохимической точки зрения АТФ – молекула средних размеров, способная присоединять или “сбрасывать” концевые фосфатные группы, в которых атом фосфора окружен атомами кислорода. Образование АТФ происходит из аденозиндифосфата (АДФ) за счет энергии, высвобождающейся при биологическом окислении глюкозы. С другой стороны, разрыв фосфатной связи в АТФ приводит к высвобождению большого количества энергии. Такую связь называют высокоэнергетической или макроэргической. Молекула АТФ содержит две таких связи, при гидролизе которых высвобождается энергия, эквивалентная 12-14 ккал.

Неизвестно, почему природа в процессе эволюции “выбрала” АТФ энергетической валютой клетки, но можно предположить несколько причин. Термодинамически эта молекула достаточно нестабильна, о чем свидетельствует большое количество энергии, выделяющейся при ее гидролизе. Но в то же время скорость ферментативного гидролиза АТФ в нормальных условиях очень мала, то есть молекула АТФ обладает высокой химической стабильностью, обеспечивая эффективное запасание энергии. Малые размеры молекулы АТФ позволяют легко диффундировать в разные участки клетки, где необходим подвод энергии для выполнения какой-либо работы. И, наконец, АТФ занимает промежуточное положение в шкале высокоэнергетических соединений, что придает ему универсальность, позволяя переносить энергию от более высокоэнергетических соединений к низкоэнергетическим.

Таким образом АТФ – это основная универсальная форма сохранения клеточной энергии, топливо клетки, доступное для использования в любой момент. А основным поставщиком энергии в клетку, как мы уже упоминали, служит глюкоза, получаемая при расщеплении углеводов. “Сгорая” в организме, глюкоза образует двуокись углерода и воду, и этот процесс обеспечивает реакции клеточного дыхания и пищеварения. Слово “сгорает” в данном случае образ, пламени внутри организма не возникает, а энергия извлекается многоступенчато химическими способами.

На первом этапе, протекающем в цитоплазме без участия кислорода, молекула глюкозы распадается на два фрагмента (две молекулы пировиноградной кислоты), и эта стадия называется гликолизом. При этом высвобождается 50 ккал/моль энергии (то есть 7% энергии, заключенной в глюкозе), часть которой рассеивается в виде тепла, а другая расходуется на образование двух молекул АТФ.

Последующее извлечение энергии из глюкозы происходит главным образом в митохондриях – силовых станциях клетки, работу которых можно сравнить с гальваническими элементами. Здесь на каждой стадии отщепляется электрон и ион водорода, и в конечном счете глюкоза разлагается до двуокиси углерода и воды. В митохондрии электроны и ионы водорода вводятся в единую цепь окислительно-восстановительных ферментов (дыхательная цепь), передаваясь от посредника к посреднику, пока они не соединятся с кислородом. И на этом этапе для окисления используется не кислород воздуха, а кислород воды и уксусной кислоты. Кислород воздуха является последним акцептором водорода, завершая весь процесс клеточного дыхания, именно поэтому он так необходим для жизни. Как известно, взаимодействие газообразного кислорода и водорода сопровождается взрывом (мгновенным выделением большого количества энергии). В живых организмах этого не происходит, так как газообразного водорода не образуется, и к моменту связывания с кислородом воздуха запас свободной энергии уменьшается настолько, что реакция образования воды протекает совершенно спокойно (смотри рисунок 1.4.11).

Глюкоза является основным, но не единственным субстратом для выработки энергии в клетке. Вместе с углеводами в наш организм с пищей поступают жиры, белки и другие вещества, которые после расщепления также могут служить источниками энергии, превращаясь в вещества, включающиеся в биохимические реакции, протекающие в клетке.

Читайте также:  Клотримазол в ухо инструкция по применению

Фундаментальные исследования в области теории информации привели к появлению понятия информационной энергии (или энергии информационного воздействия), как разности между определенностью и неопределенностью. Здесь же хотелось бы отметить, что клетка потребляет и тратит информационную энергию на ликвидацию неопределенности в каждый момент своего жизненного цикла. Это приводит к реализации жизненного цикла без увеличения энтропии.

Нарушение процессов энергетического обмена под влиянием различных воздействий приводит к сбоям на отдельных стадиях и вследствие этих сбоев к нарушению подсистемы жизнедеятельности клетки и всего организма в целом. Если количество и распространенность этих нарушений превышают компенсаторные возможности гомеостатических механизмов в организме, то система выходит из под управления, клетки перестают работать синхронно. На уровне организма это проявляется в виде различных патологических состояний.

Так, недостаток витамина B1, участвующего в работе некоторых ферментов, приводит к блокированию окисления пировиноградной кислоты, избыток гормонов щитовидной железы нарушает синтез АТФ и т.д. Смертельные исходы при инфаркте миокарда, отравлении угарным газом или цианистым калием также связаны с блокированием процесса клеточного дыхания путем ингибирования или разобщения последовательных реакций. Через подобные механизмы опосредованно и действие многих бактериальных токсинов.

Таким образом, функционирование клетки, ткани, органа, системы органов или организма как системы поддерживается саморегуляторными механизмами, оптимальное течение которых, в свою очередь, обеспечивается биофизическими, биохимическими, энергетическими и информационными процессами.

источник

Main page / Живомордность / ☢ Энергетические процессы в клетках: запасание и использование энергии

Как именно энергия запасается в АТФ (аденозинтрифосфат), и как она отдается для совершения какой-то полезной работы? Кажется невероятно сложным, что некая абстрактная энергия вдруг получает материальный носитель в виде молекулы, находящейся внутри живых клеток, и что она может высвобождаться не в виде тепла (что более-менее понятно), а в виде создания другой молекулы. Обычно авторы учебников ограничиваются фразой «энергия запасается в виде высокоэнергетической связи между частями молекулы, и отдается при разрыве этой связи, совершая полезную работу», но это ничего не объясняет.

В самых общих чертах эти манипуляции с молекулами и энергией происходят так: сначала в митохондриях создаются молекулы АТФ. Или создаются в хлоропластах в цепи похожих реакций. На это тратится энергия, получаемая при контролируемом сгорании питательных веществ прямо внутри митохондрий или энергия фотонов солнечного света, падающих на молекулу хлорофилла. Потом АТФ доставляется в те места клетки, где необходимо совершить какую-то работу. И при отщеплении от нее одной или двух фосфатных групп выделяется энергия, которая эту работу и совершает. АТФ при этом распадается на две молекулы: если отщепилась только одна фосфатная группа, то АТФ превращается в АДФ (аденозинДИфосфат, отличающийся от аденозинТРИфосфата только отсутствием той самой отделившейся фосфатной группы). Если АТФ отдала сразу две фосфатные группы, то энергии выделяется больше, а от АТФ остается аденозинМОНОфосфат (АМФ).

Очевидно, что клетке необходимо осуществлять и обратный процесс, превращая молекулы АДФ или АМФ в АТФ, чтобы цикл мог повториться. Но эти молекулы-«заготовки» могут спокойно плавать рядом с недостающими им для превращения в АТФ фосфатами, и никогда с ними не объединиться, потому что такая реакция объединения энергетически невыгодна.

Что такое «энергетическая выгода» химической реакции, понять довольно просто, если знать о втором законе термодинамики: во Вселенной или в любой системе, изолированной от остальных, беспорядок может лишь нарастать. То есть сложноорганизованные молекулы, сидящие в клетке в чинном порядке, в соответствии с этим законом могут только разрушаться, образуя более мелкие молекулы или даже распадаясь на отдельные атомы, ведь тогда порядка будет заметно меньше. Чтобы понять эту мысль, можно сравнить сложную молекулу с собранным из Лего самолетиком. Тогда мелкие молекулы, на которые распадается сложная, будут ассоциироваться с отдельными частями этого самолета, а атомы — с отдельными кубиками Лего. Посмотрев на аккуратно собранный самолет и сравнив его с беспорядочной кучей деталей, становится понятно, почему сложные молекулы содержат больше порядка, чем мелкие.

Такая реакция распада (молекул, не самолета) будет энергетически выгодной, а значит может осуществляться самопроизвольно, и при распаде будет выделяться энергия. Хотя на самом деле и расщепление самолета будет энергетически выгодно: несмотря на то, что сами по себе детали отщепляться друг от друга не будут и над их отцеплением придется попыхтеть сторонней силе в виде пацана, который хочет использовать эти детали для чего-то другого, он затратит на превращение самолета в хаотическую кучу деталей энергию, полученную от поедания высокоупорядоченной пищи. И чем плотнее слиплись детали, тем больше энергии будет потрачено, в том числе выделено в виде тепла. Итог: кусок плюшки (источник энергии) и самолет превращены в беспорядочную массу, молекулы воздуха вокруг ребенка нагрелись (а значит движутся более беспорядочно) — хаоса стало больше, то есть расщепление самолета энергетически выгодно.

Подводя итог, можно сформулировать такие правила, следующие из второго закона термодинамики:

1. При снижении количества порядка энергия выделяется, происходят энергетически выгодные реакции

2. При увеличении количества порядка энергия поглощается, происходят энергетически затратные реакции

На первый взгляд, такое неизбежное движение от порядка к хаосу делает невозможным обратные процессы, такие как построение из одной оплодотворенной яйцеклетки и молекул питательных веществ, поглощеных матерью-коровой, несомненно весьма упорядоченного по сравнению с пережеванной травой теленка.

Но все-таки это происходит, и причина этого в том, что живые организмы имеют одну фишку, позволяющую и поддержать стремление Вселенной к энтропии, и построить себя и свое потомство: они объединяют в один процесс две реакции, одна из которых энергетически выгодна, а другая энергозатратна. Таким совмещением двух реакций можно добиться того, чтобы энергия, выделяемая при первой реакции, с избытком перекрывала энергетические затраты второй. В примере с самолетом отдельно взятое его разбирание энергозатратно, и без стороннего источника энергии в виде разрушенной метаболизмом пацана плюшки самолет стоял бы вечно.

Это как при катании с горки на санках: сначала человек во время поглощения пищи запасает энергию, полученную в результате энергетически выгодных процессов расщепления высокоупорядоченной курицы на молекулы и атомы в его организме. А потом тратит эту энергию, затаскивая санки на гору. Перемещение санок от подножия к вершине энергетически невыгодно, поэтому самопроизвольно они туда никогда не закатятся, на это нужна какая-то сторонняя энергия. И если энергии, полученной от поедания курицы, будет недостаточно для преодоления подъема, то процесса «скатывание на санках с вершины горы» не будет.

Именно энергозатратные реакции ( energy-consuming reaction ) увеличивают количество порядка, поглощая энергию, выделяемую при сопряженной реакции. И баланс между выделением и потреблением энергии в этих сопряженных реакциях всегда должен быть положительным, то есть их совокупность будет увеличивать количество хаоса. Примером увеличения энтропии (неупорядоченности) ( entropy [‘entr ə p ɪ ] ) является выделение тепла при энергодающей реакции ( energy supply reaction ): соседние с вступившими в реакцию молекулами частицы вещества получают энергичные толчки от реагирующих, начинают двигаться быстрее и хаотичнее, распихивая в свою очередь другие молекулы и атомы этого и соседних веществ.

Вернемся еще раз к получению энергии из пищи: кусок Banoffee Pie гораздо более упорядочен, чем получившаяся в результате пережевывания масса, попавшая в желудок. Которая в свою очередь состоит из крупных, более упорядоченных молекул, чем те, на которые ее расщепит кишечник. А они в свою очередь будут доставлены в клетки тела, где от них будут отрывать уже отдельные атомы и даже электроны… И на каждом этапе увеличения хаоса в отдельно взятом куске торта будет происходить выделение энергии, которую улавливают органы и органеллы счастливого поедателя, запасая ее в виде АТФ (энергозатратно), пуская на построение новых нужных молекул (энергозатратно) или на нагревание тела (тоже энергозатратно). В системе «человек — Banoffee Pie — Вселенная» порядка в результате этого стало меньше (за счет разрушения кейка и выделения тепловой энергии перерабатывающими его органеллами), но в отдельно взятом человеческом теле счастья порядка стало больше (за счет возникновения новых молекул, частей органелл и целых клеточных органов).

Если вернуться к молекуле АТФ, после всего этого термодинамического отступления становится понятно, что на создание ее из составных частей (более мелких молекул) необходимо затратить энергию, полученную от энергетически выгодных реакций. Один из способов ее создания подробно описан в одной из глав про митохондрий, другой (весьма схожий) используется в хлоропластах, где вместо энергии протонного градиента используется энергия фотонов, испущенных Солнцем.

Можно выделить три группы реакций, в результате которых производится АТФ (смотри схему справа):

  • расщепление глюкозы и жирных кислот на крупные молекулы в цитоплазме уже позволяет получить некоторое количество АТФ (небольшое, на одну расщепленную на этом этапе молекулу глюкозы приходится всего лишь 2 полученные молекулы АТФ). Но основная цель этого этапа заключается в создании молекул, использующихся в дыхательной цепи митохондрий.
  • дальнейшее расщепление полученных на предыдущем этапе молекул в цикле Кребса, протекающее в матриксе митохондрий, дает всего одну молекулу АТФ, его основная цель та же, что и в прошлом пункте.
  • наконец накопленные на предыдущих этапах молекулы используются в дыхательной цепи митохондрий для производства АТФ, и вот тут его выделяется много (про это подробнее ниже).

Если описать все это более развернуто, взглянув на те же реакции с точки зрения получения и затрат энергии, получится вот что:

0. Молекулы пищи аккуратно сжигаются (окисляются) в первичном расщеплении, происходящем в цитоплазме клетки, а также в цепи химических реакций под названием «цикл Кребса», протекающем уже в матриксе митохондрий — энергодающая часть подготовительного этапа.

В результате сопряжения с этими энергетически выгодными реакциями других, уже энергетически невыгодных реакций создания новых молекул образуются 2 молекулы АТФ и несколько молекул других веществ — энергозатратная часть подготовительного этапа. Эти попутно образующиеся молекулы являются переносчиками высокоэнергетических электронов, которые будут использованы в дыхательной цепи митохондрий на следующем этапе.

1. На мембранах митохондрий, бактерий и некоторых архей происходит энергодающее отщепление протонов и электронов от молекул, полученных в предыдущем этапе (но не от АТФ). Прохождение электронов по комплексам дыхательной цепи (I, III и IV на схеме слева) показано желтыми извилистыми стрелками, прохождение через эти комплексы (а значит, и через внутреннюю мембрану митохондрии) протонов — красными стрелками.

Почему электроны нельзя просто отщепить от молекулы-переносчика с использованием мощного окислителя-кислорода и использовать выделяющуюся энергию? Зачем передавать их от одного комплекса к другому, ведь в итоге они к тому же кислороду и приходят? Оказывается, чем больше разница в способности притягивать электроны у электронодающей (восстановителя) и электроноберущей (окислителя) молекул, участвующих в реакции передачи электрона, тем большая энергия выделяется при этой реакции.

Разница в такой способности у образующихся в цикле Кребса молекул-переносчиков электронов и кислорода такова, что выделившейся при этом энергии было бы достаточно для синтеза нескольких молекул АТФ. Но из-за такого резкого перепада в энергии системы эта реакция протекала бы с почти взрывной мощью, и почти вся энергия выделялась бы в виде неулавливаемого тепла, то есть фактически терялась.

Живые клетки же делят эту реакцию на несколько маленьких стадий, сначала передавая электроны от слабо притягивающих молекул-носителей к чуть сильнее притягивающему первому комплексу в дыхательной цепи, от него к еще немного сильнее притягивающему убихинону (или коэнзиму Q-10), чья задача заключается в перетаскивании электронов к следующему, еще немного сильнее притягивающему дыхательному комплексу, который получает свою часть энергии от этого несостоявшегося взрыва, пуская ее на прокачку протонов через мембрану.. И так до момента, пока электроны не встретятся наконец с кислородом, притянувшись к нему, прихватив пару протонов, и не образуют молекулу воды. Такое деление одной мощной реакции на мелкие шаги позволяет почти половину полезной энергии направить на совершение полезной работы: в данном случае на создание протонного электрохимического градиента, о котором речь пойдет во втором пункте.

Как именно энергия передаваемых электронов помогает сопряженной энергозатратной реакции прокачки протонов через мембрану, сейчас только начинают выяснять. Скорее всего, присутствие электрически заряженной частицы (электрона) влияет на конфигурацию того места во встроенном в мембрану протеине, где он находится: так, что это изменение провоцирует затягивание протона в протеин и его движение через протеиновый канал в мембране. Важно то, что фактически энергия, полученная в результате отщепления высокоэнергетичных электронов от молекулы-носителя и итоговой передачи их кислороду, запасается в виде протонного градиента.

2. Энергия протонов, накопившихся в результате событий из пункта 1 с внешней стороны мембраны и стремящихся попасть на внутреннюю сторону, состоит из двух однонаправленных сил:

  • электрической (положительный заряд протонов стремится перейти в место скопления отрицательных зарядов с другой стороны мембраны) и
  • химической (как в случае любых других веществ, протоны пытаются равномерно рассеяться в пространстве, распространившись из мест с их высокой концентрацией в места, где их мало)

Электрическое притяжение протонов к отрицательно заряженной стороне внутренней мембраны является намного более мощной силой, чем возникающее из-за разницы в концентрации протонов их стремление перейти в место с меньшей концентрацией (это обозначено шириной стрелок на схеме вверху). Совместная энергия этих влекущих сил настолько велика, что ее хватает и на перемещение протонов внутрь мембраны, и на подпитывание сопутствующей энергозатратной реакции: создание АТФ из АДФ и фосфата.

Рассмотрим подробнее, почему на это нужна энергия, и как именно энергия стремления протонов превращается в энергию химической связи между двумя частями молекулы АТФ.

Молекула АДФ (на схеме справа) не жаждет обзаводиться еще одной фосфатной группой: тот атом кислорода, к которому эта группа может прикрепиться, заряжен так же отрицательно, как и фосфат, а значит они взаимно отталкиваются. И вообще АДФ не собирается вступать в реакции, она химически пассивна. У фосфата, в свою очередь, к тому атому фосфора, который мог бы стать местом связи фосфата и АДФ при создании молекулы АТФ, присоединен собственный атом кислорода, так что и он инициативы проявить не может.

Читайте также:  Какая доза парацетамола в 8 лет

Поэтому эти молекулы необходимо связать одним ферментом, развернуть их так, чтобы связи между ними и «лишними» атомами ослабли и разорвались, а после этого подвести два химически активных конца этих молекул, на которых атомы испытывают недостаток и избыток электронов, друг к другу.

Попавшие в поле взаимной досягаемости ионы фосфора (P + ) и кислорода (O — ) связываются прочной ковалентной связью за счет того, что совместно овладевают одним электроном, изначально принадлежавшим кислороду. Этим обрабатывающим молекулы ферментом является АТФ-синтаза, а энергию на изменение и своей конфигурации, и взаимного расположения АДФ и фосфата она получает от проходящих через нее протонов. Протонам энергетически выгодно попасть на противоположно заряженную сторону мембраны, где к тому же их мало, а единственный путь проходит через фермент, «ротор» которого протоны попутно вращают.

Строение АТФ-синтазы показано на схеме справа. Ее вращающийся за счет прохождения протонов элемент выделен фиолетовым цветом, а на подвижной картинке внизу показана схема его вращения и создания при этом молекул АТФ. Фермент работает практически как молекулярный мотор, превращая электрохимическую энергию тока протонов в механическую энергию трения двух наборов протеинов друг о друга: вращающаяся «ножка» трется о неподвижные протеины «шляпки гриба», при этом субъединицы «шляпки» изменяют свою форму. Эта механическая деформация превращается в энергию химических связей при синтезе АТФ, когда молекулы АДФ и фосфата обрабатываются и разворачиваются нужным для образования между ними ковалентной связи образом.

Каждая АТФ-синтаза способна синтезировать до 100 молекул АТФ в секунду, и на каждую синтезируемую молекулу АТФ через синтетазу должно пройти около трех протонов. Большая часть синтезируемых в клетках АТФ образуется именно этим путем, и лишь небольшая часть является результатом первичной обработки молекул пищи, происходящей вне митохондрий.

В любой момент в типичной живой клетке находится примерно миллиард молекул АТФ. Во многих клетках вся эта АТФ сменяется (т.е. используется и создается вновь) каждые 1-2 минуты. Средний человек в состоянии покоя использует каждые 24 часа массу АТФ, примерно равную его собственной массе.

В целом почти половина энергии, выделяющаяся при окислении глюкозы или жирных кислот до углекислого газа и воды, улавливается и используется для протекания энергетически невыгодной реакции образования АТФ из АДФ и фосфатов. Коэффициент полезного действия в размере 50% — это очень неплохо, например двигатель автомобиля пускает на полезную работу всего лишь 20% содержащейся в топливе энергии. При этом остальная энергия в обоих случаях рассеивается в виде тепла, и так же как некоторые автомобили, животные постоянно тратят этот избыток (хоть и не полностью, конечно) на разогревание тела. В процессе упомянутых здесь реакций одна молекула глюкозы, постепенно расщепленная до углекислого газа и воды, поставляет клетке 30 молекул АТФ.

Итак, с тем, откуда берется энергия и как именно она запасается в АТФ, все более-менее понятно. Осталось понять, как именно запасенная энергия отдается и что при этом происходит на молекулярно-атомном уровне.

Образованная ковалентная связь между АДФ и фосфатом называется высокоэнергетичной по двум причинам:

  • при ее разрушении выделяется много энергии
  • электроны, участвующие в создании этой связи (то есть вращающиеся вокруг атомов кислорода и фосфора, между которыми эта связь образована) высокоэнергетичны, то есть находятся на «высоких» орбитах вокруг ядер атомов. И им было бы энергетически выгодно перескочить на уровень пониже, выделив излишек энергии, но пока они находятся именно в этом месте, скрепляя атомы кислорода и фосфора, «спрыгнуть» не получится.

Это стремление электронов упасть на более удобную низкоэнергетичную орбиту обеспечивает и легкость разрушения высокоэнергетичной связи, и выделяемую при этом в виде фотона (являющегося переносчиком электромагнитного взаимодействия) энергию. В зависимости от того, какие молекулы будут подставлены ферментами к разрушающейся молекуле АТФ, какая именно молекула поглотит испущенный электроном фотон, могут происходить разные варианты событий. Но каждый раз энергия, запасенная в виде высокоэнергетической связи, будет использоваться на какие-то нужды клетки:

Сценарий 1: фосфат может быть перенесен на молекулу другого вещества. При этом высокоэнергетичные электроны образуют новую связь, уже между фосфатом и крайним атомом этой молекулы-реципиента. Условием протекания такой реакции является ее энергетическая выгода: в этой новой связи электрон должен обладать немного меньшей энергией, чем когда он был частью молекулы АТФ, испустив часть энергии в виде фотона вовне.

Цель такой реакции заключается в активации молекулы-рецепиента (на схеме слева она обозначена В-ОН): до присоединения фосфата она была пассивной и не могла вступить в реакцию с другой пассивной молекулой А, но теперь она является обладателем запаса энергии в виде высокоэнергетичного электрона, а значит может ее куда-то потратить. Например, на то, чтобы присоединить к себе молекулу А, которую без такого финта ушами (то есть высокой энергии связующего электрона) присоединить невозможно. Фосфат при этом отсоединяется, сделав свое дело.

Получается такая цепочка реакций:

1. АТФ + пассивная молекула В ➡️ АДФ + активная за счет присоединенного фосфата молекула В-Р

2. активированная молекула В-Р + пассивная молекула А ➡️ соединенные молекулы А-В + отщепившийся фосфат (Р)

Обе этих реакции энергетически выгодные: в каждой из них участвует высокоэнергетичный связующий электрон, который при разрушении одной связи и построении другой теряет часть своей энергии в виде испускания фотона. В результате этих реакций соединились две пассивные молекулы. Если рассмотреть реакцию соединения этих молекул напрямую (пассивная молекула В + пассивная молекула А ➡️ соединенные молекулы А-В), то она оказывается энергетически затратной, и совершиться не может. Клетки «совершают невозможное», сопрягая эту реакцию с энергетически выгодной реакцией расщепления АТФ на АДФ и фосфат во время совершения тех двух реакций, которые описаны выше. Отщепление происходит в два этапа, на каждом из которых часть энергии связующего электрона тратится на совершение полезной работы, а именно на создание нужных связей между двумя молекулами, из которых получается третья (А-В), необходимая для функционирования клетки.

Сценарий 2: фосфат может быть отщеплен одномоментно от молекулы АТФ, а выделяющаяся энергия улавливается ферментом или рабочим протеином и тратится на совершение полезной работы.

Как можно уловить что-то настолько неощутимое, как ничтожное возмущение электромагнитного поля в момент падения электрона на более низкую орбиту? Очень просто: с помощью других электронов и с помощью атомов, способных поглотить выделяемый при этом электроном фотон.

Атомы, составляющие молекулы, скреплены в прочные цепочки и кольца за счет ковалентных связей (такую цепочку представляет собой несвернутый протеин на картинке справа). А отдельные части этих молекул притянуты друг к другу более слабыми электромагнитными взаимодействиями (например, водородными связями или силами Ван дер Ваальса), что и позволяет им сфорачиваться в сложные структуры. Некоторые из этих конфигураций атомов очень стабильны, и никакое возмущение электромагнитного поля их не поколебит.. не поколебёт.. в общем, они устойчивы. А некоторые довольно подвижны, и достаточно легкого электромагнитного пинка, чтобы они изменили свою конфигурацию (обычно это не ковалентные связи). И именно такой пинок дает им тот самый прилетевший фотон-переносчик электромагнитного поля, испущенный перешедшим на более низкую орбиту электроном при отсоединении фосфата.

Изменения конфигурации протеинов в результате расщепления молекул АТФ ответственны за самые удивительные события, происходящие в клетке. Наверняка те, кто интересуются клеточными процессами хотя бы на уровне «посмотрю их анимацию на youtube» натыкались на видео, показывающее протеиновую молекулу кинезина, в прямом смысле слова шагающую, переставляя ноги, по нити клеточного скелета, перетаскивая присоединенный к ней груз.

Именно отщепление фосфата от АТФ обеспечивает это шагание, и вот каким образом:

Кинезин ( kinesin ) относится к особому виду протеинов, которым свойственно спонтанно менять свою конформацию (взаимное положение атомов в молекуле). Оставленный в покое, он случайным образом переходит из конформации 1, в которой он прикреплен одной «ногой» к актиновому филаменту ( actin filament ) — самой тонкой нити, образующей цитоскелет клетки ( cytoskeleton ), в конформацию 2, сделав таким образом шаг вперед и стоя на двух «ногах». Из конформации 2 он с равной вероятностью перейдет как в конформацию 3 (приставляет заднюю ногу к передней), так и обратно в конформацию 1. Поэтому движения кинезина в каком-либо направлении не происходит, он просто бесцельно фланирует.

Но все меняется, стоит ему соединиться с молекулой АТФ. Как показано на схеме слева, присоединение АТФ к кинезину, находящемуся в конформации 1, приводит к изменению его пространственного положения и он переходит в конформацию 2. Причина этого — взаимное электромагнитное влияние молекул АТФ и кинезина друг на друга. Эта реакция является обратимой, потому что энергии затрачено не было, и если АТФ отсоединится от кинезина, он просто поднимет «ногу», оставшись на месте, и будет ждать следующую молекулу АТФ.

Но если она задержится, то из-за взаимного притяжения этих молекул связь, удерживающая фосфат в пределах АТФ, разрушается. Выделившаяся при этом энергия, а так же распад АТФ на две молекулы (которые уже по другому влияют своими электромагнитными полями на атомы кинезина) приводят к тому, что конформация кинезина меняется: он «подтаскивает заднюю ногу». Осталось сделать шаг вперед, что и происходит при отсоединении АДФ и фосфата, возвращающем кинезин в исходную конформацию 1.

В результате гидролиза АТФ кинезин сдвинулся вправо, и как только к нему присоединится следующая молекула, он сделает еще одну пару шагов, использовав запасенную в ней энергию.

Важно, что кинезин, находящийся в конформации 3 с присоединенными АДФ и фосфатом не может вернуться в конформацию 2, сделав «шаг назад». Это объясняется все тем же принципом соответствия второму закону терморегуляции: переход системы «кинезин + АТФ» из конформации 2 в конформацию 3 сопровождается выделением энергии, а значит обратный переход будет энергозатратным. Чтобы он произошел, нужно откуда-то взять энергию на соединение АДФ с фосфатом, а взять ее в этой ситуации неоткуда. Поэтому соединенному с АТФ кинезину открыт путь только в одну сторону, что и позволяет совершать полезную работу по перетаскиванию чего-либо из одного конца клетки в другой. Кинезин например участвует в растаскивании хромосом делящейся клетки при митозе (процессе деления эукариотических клеток). А мышечный протеин миозин бежит вдоль актиновых филаментов, вызывая сокращение мышцы.

Это движение бывает очень быстрым: некоторые моторные (отвечающие за различные формы клеточной подвижности) протеины, задействованные в репликации генов, мчатся вдоль цепочки ДНК со скоростью тысячи нуклеотидов в секунду.

Все они передвигаются за счет гидролиза АТФ(разрушения молекулы с присоединением к получающимся в результате распада меньшим молекулам атомов, взятых из молекулы воды. Гидролиз показан на правой части схемы взаимопревращения АТФ и АДФ). Или за счет гидролиза ГТФ, отличающегося от АТФ только тем, что в его состав входит другой нуклеотид (гуанин).

Сценарий 3 : отщепление от АТФ или другой подобной молекулы, содержащей нуклеотид, сразу двух фосфатных групп приводит к еще большему выбросу энергии, чем когда отщепляется только один фосфат. Такой мощный выброс позволяет создавать прочный сахарофосфатный остов молекул ДНК и РНК:

1. для того, чтобы нуклеотиды могли присоединяться к строящейся цепи ДНК или РНК, их нужно активировать, присоединив две молекулы фосфата. Это энергозатратная реакция, выполняемая клеточными ферментами.

2. фермент ДНК- или РНК-полимераза (на схеме внизу не показан) присоединяет активированный нуклеотид (на схеме показан ГТФ) к строящемуся полинуклеотиду и катализирует отщепление двух фосфатных групп. Выделившаяся энергия используется на создание связи между фосфатной группой одного нуклеотида и рибозой другого. Созданные в результате связи не являются высокоэнергетичными, а значит разрушить их не просто, что является преимуществом для построения молекулы, содержащей наследственную информацию клетки или передающей ее.

? в природе возможно спонтанное протекание только энергетически выгодных реакций, что обусловлено вторым законом термодинамики

? тем не менее живые клетки могут совмещать две реакции, одна из которых дает чуть больше энергии, чем поглощает вторая, и таким образом осуществлять энергозатратные реакции. Энергозатратные реакции направлены на создание из отдельных молекул и атомов более крупных молекул, клеточных органелл и целых клеток, тканей, органов и многоклеточных живых существ, а так же на запасание энергии для их метаболизма

? запасание энергии осуществляется за счет контролируемого и постепенного разрушения органических молекул (энергодающий процесс), сопряженного с созданием молекул-энергоносителей (энергозатратный процесс). Фотосинтезирующие организмы запасают таким образом энергию улавливаемых хлорофиллом солнечных фотонов

? молекулы-энергоносители делятся на две группы: хранящие энергию в виде высокоэнергетической связи или в виде присоединенного высокоэнергетического электрона. Впрочем, в первой группе высокая энергия обеспечивается таким же высокоэнергетическим электроном, так что можно сказать, что энергия запасается в загнанных на высокий уровень электронах, находящихся в составе разных молекул

? запасенная таким образом энергия отдается так же двумя способами: разрушением высокоэнергетической связи или передачей высокоэнергетических электронов для постепенного снижения их энергии. В обоих случаях энергия выделяется в виде испускания переходящим на более низкий энергетический уровень электроном частицы-переносчика электромагнитного поля (фотона) и тепла. Этот фотон улавливается таким образом, чтобы была совершена полезная работа (образование нужной для метаболизма молекулы в первом случае и прокачки протонов через мембрану митохондрии во втором)

? запасенная в виде протонного градиента энергия используется для синтеза АТФ, а также для других клеточных процессов, которые остались за рамками этой главы (думаю, никто не в обиде, учитывая ее размер). А синтезированная АТФ используется так, как описано в предыдущем пункте.

источник

Понравилась статья? Поделить с друзьями: