Сколько химических элементов в клетке

Клетки живых организмов по своему химическому составу значительно отличаются от окружающей их неживой среды и по структуре химических соединений, и по набору и содержанию химических элементов. Всего в живых организмах присутствует (обнаружено на сегодняшний день) около 90 химических элементов, которые, в зависимости от их содержания, разделяют на 3 основных группы: макроэлементы, микроэлементы и ультрамикроэлементы.

Макроэлементы в значительных количествах представлены в живых организмах, начиная от сотых долей процента до десятков процентов. Если содержание какого-либо химического вещества в организме превышает 0.005% от массы тела, такое вещество относят к макроэлементам. Они входят в состав основных тканей: крови, костей и мышц. К ним относятся, например, следующие химические элементы: водород, кислород, углерод, азот, фосфор, сера, натрий, кальций, калий, хлор. Макроэлементы в сумме составляют около 99% от массы живых клеток, причем большая часть (98%) приходится именно на водород, кислород, углерод и азот.

В таблице ниже представлены основные макроэлементы в организме:

Элемент Символ
Главные макроэлементы (99.3 % всех атомов)
Водород H (63%)
Кислород O (26%)
Углерод C (9%)
Азот N (1 %)
Другие макроэлементы (0.7 % всех атомов)
Кальций Ca
Фосфор P
Калий K
Сера S
Натрий Na
Хлор Cl
Магний Mg

Для всех четырех самых распространенных в живых организмах элементов (это водород, кислород, углерод, азот, как было сказано ранее) характерно одно общее свойство. Этим элементам не хватает одного или нескольких электронов на внешней орбите для образования стабильных электронных связей. Так, атому водорода для образования стабильной электронной связи не хватает одного электрона на внешней орбите, атомам кислорода, азота и углерода — двух, трех и четырех электронов соответственно. В связи с этим, эти химические элементы легко образуют ковалентные связи за счет спаривания электронов, и могут легко взаимодействовать друг с другом, заполняя свои внешние электронные оболочки. Кроме этого, кислород, углерод и азот могут образовывать не только одинарные, но и двойные связи. В результате чего существенно увеличивается количество химических соединений, которые могут образовываться из этих элементов.

Кроме того, углерод, водород и кислород — наиболее легкие среди элементов, способных образовывать ковалентные связи. Поэтому они оказались наиболее подходящими для образования соединений, входящих в состав живой материи. Необходимо отметить отдельно еще одно важное свойство атомов углерода — способность образовывать ковалентные связи сразу с четырьмя другими атомами углерода. Благодаря этой способности создаются каркасы из огромного количества разнообразных органических молекул.

Хотя содержание микроэлементов не превышает 0,005% для каждого отдельного элемента, а в сумме они составляют всего лишь около 1% массы клеток, микроэлементы необходимы для жизнедеятельности организмов. При их отсутствии или недостаточном содержании могут возникать различные заболевания. Многие микроэлементы входят в состав небелковых групп ферментов и необходимы для осуществления их каталитической функции.
Например, железо является составной частью гема, который входит в состав цитохромов, являющихся компонентами цепи переноса электронов, и гемоглобина — белка, который обеспечивает транспорт кислорода от легких к тканям. Дефицит железа в организме человека вызывает развитие анемии. А недостаток йода, входящего в состав гормона щитовидной железы — тироксина, приводит к возникновению заболеваний, связанных с недостаточностью этого гормона, таких как эндемический зоб или кретинизм.

Примеры микроэлементов представлены в таблице ниже:

Элемент Символ
Микроэлементы (менее 0.01% всех атомов)
Железо Fe
Йод I
Медь Cu
Цинк Zn
Марганец Mn
Кобальт Co
Хром Cr
Селен Se
Молибден Mo
Фтор F
Олово Sn
Кремний Si
Ванадий V

В состав группы ультрамикроэлементов входят элементы, содержание которых в организме крайне мало (менее 10 -12 %). К ним относятся бром, золото, селен, серебро, ванадий и многие другие элементы. Большинство из них также необходимы для нормального функционирования живых организмов. Например, нехватка селена может привести к возникновению раковых заболеваний, а недостаток бора — причина некоторых заболеваний у растений. Многие элементы этой группы также, как и микроэлементы, входят в состав ферментов.

источник

1. Сколько химических элементов можно обнаружить в клетке? 2. Какие химические элементы, содержащиеся в клетке, относят к макроэлементам?

1 Тема урока:» Химический состав клетки». 1. Поверьте свои знания по этой теме (фронт-.парн.раб). Тест «Неорганические вещества клетки» 1. Сколько химических элементов можно обнаружить в клетке? а) 24; б)70; в) Какие химические элементы, содержащиеся в клетке, относят к макроэлементам? а) S, Na, Ca, K; б) O, H, C, N; в) Ni, Cu, I, Br. 3. В каких клетках человека больше всего воды? а) Жировых; б) костных; в) нервных. 4. Каковы функции воды в клетке? а) Передача наследственной информации; б) среда для химических реакций; в) источник энергии. 5. К гидрофобным веществам относят: а) соли; б) сахар; в) жиры. 6. Какие ионы входят в состав гемоглобина? а) Mg2+; б) Fe2+; в) Zn На каком уровне организации наблюдаются различия между органическим и неорганическим миром? а) Атомарный; б) молекулярный; в) клеточный. 8. Больше всего воды содержится в клетках: а) эмбриона; б) молодого человека; в) старика. 9. Вода основа жизни, т.к. она: а) может находиться в трех состояниях (жидком, твердом и газообразном); б) является растворителем, обеспечивающим как приток веществ в клетку, так и удаление из нее продуктов обмена; в) охлаждает поверхность при испарении.

2 10. Вещества, хорошо растворимые в воде, называются: а) гидрофильными; б) гидрофобными; в) амфифильными. 11. Угол между валентными связями Н О Н в молекуле воды составляет: а) 90 ; б) 104,5 ; в) Чем объясняется относительное постоянство реакции среды содержимого клетки? а) Тургором; в) осмосом; в) буферностью. — Всѐ ли у вас получилось? — На какие вопросы знаний оказалось недостаточно? -Сформулируйте цели урока. Задание 1. Цель: Охарактеризуйте элементный состав клетке. -Назовите химические элементы, % содержание которых максимально. -Разделите элементы на группы по признаку и % содержания в клетке Элемент Количество, % Элемент Количество, % Кислород Кальций 0,04-2,00 Углерод Магний 0,02-0,03 Водород 8-10 Натрий 0,02-0,03 Азот 1,5-3,0 Железо 0,01-0,015 Фосфор 0,2-1,0 Цинк 0,0003 Калий 0,15-0, Медь 0,0002 Сера 0,15-0,2 Иод 0,0001 Хлор 0,05-0,10 Фтор 0,000 Вывод: по содержанию в клетке, все элементы можно разделить на: — макроэлементы ( концентр. не превышает 0,001%) — микроэлементы (от 0,001% до 0,000001%) — ультрамикроэлементы (не превышает 0,000001%)

3 В чем же принципиальное различие в поведении макро- и микроэлементов в организме? Микроэлементы неравномерно распределены между тканями и часто обладают сродством к определенному типу тканей и органов. Так цинк аккумулируется в поджелудочной железе; молибден — в почках; барий в сетчатке глаза; стронций в костях; йод в щитовидной железе. Содержание макроэлементов в организме достаточно постоянно, но даже сравнительно большие отклонения от нормы совместимы с жизнедеятельностью организма. Напротив, уже незначительные отклонения содержания микроэлементов от нормы вызывают тяжелые заболевания. Анализ на содержание отдельных микроэлементов в органах и тканях чувствительный диагностический тест, позволяющий обнаруживать и лечить различные заболевания. Так, снижение содержания цинка в плазме крови обязательное следствие инфаркта миокарда. Уменьшение содержания лития в крови показатель гипертонического заболевания. — Из элементов состоят все вещества клетки. А какие вещества клетки вам известны? — Какие именно неорганические вещества входят в состав клетки? — А что относится к органическим веществам клетки? неорганические вещества органические вещества вода минеральные соли белки жиры углеводы нуклеиновые кислоты АТФ Вода один из важнейших факторов внешней среды, от которого зависит здоровье людей. — Какова же роль воды в клетке? Задание 2. Цель: выявить роль воды в клетке. Познакомиться с учебной информацией, ответить на предложенные вопросы, обсудить результат работы, выполнить проверочный тест. Самое распространѐнное вещество на Земле — вода. Еѐ содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша более 90%.

4 В состав человеческого тела входит около 65% воды. Это значит, что во взрослом человеке, который в среднем весит 70 кг, примерно 46 кг приходится на воду. Особенно богаты ею ткани молодого организма: в теле трехмесячного человеческого плода 95% воды, у новорожденного ребенка 70% (многие ученые одной из причин старения считают понижение способности белков организма связывать большие количества жидкости). Вода входит в состав всех органов и тканей человека; даже такая плотная ткань, как кость, содержит около 20% воды, в печени, мышцах, мозге 70 80%, в крови около 80%. Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на еѐ химических и физических свойствах. Химические и физические свойства воды объясняются малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом. Молекула воды имеет угловое строение: представляет собой равнобедренный треугольник с углом при вершине 104,5. Молекулярная масса воды в парообразном состоянии равна 18 г/моль. Однако молекулярная масса жидкой воды оказывается более высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, вызванная водородными связями. Молекула полярна: кислородный атом несѐт частичный отрицательный заряд, а два водородных частично положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды между ними устанавливаются водородные связи, которые влияют на физические свойства воды. Из-за высокой полярности молекул вода является растворителем других полярных соединений, не имея себе равных. В воде растворяется больше веществ, чем в любой другой жидкости. Именно поэтому в водной среде клетки осуществляется множество химических реакций. Вода растворяет продукты обмена веществ и выводит их из клетки и организма в целом. По отношению к воде различают: Гидрофильные вещества хорошо растворимые в воде вещества. Гидрофобные вещества плохо растворимые в воде вещества. Вода обладает большой теплоемкостью, т.е. способностью поглощать теплоту. При минимальном изменении ее собственной температуры выделяется или поглощается значительное количество теплоты. Благодаря этому она предохраняет клетку от резких изменений температуры. Поскольку на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении). Вода обладает высокой теплопроводностью. Такое свойство создает возможность равномерно распределять теплоту между тканями тела. Благодаря силам адгезии и коагезии вода способна подниматься по капиллярам (один из факторов, обеспечивающих движение воды в сосудах растений). Человек чрезвычайно

5 остро реагирует на нарушение водного баланса. Так, при утрате влаги в размере 6 8% от веса тела он впадает в полуобморочное состояние. Потеря 10% влаги вызывает нарушение глотательного рефлекса, затем начинаются галлюцинации, в конце концов останавливается сердце оно оказывается не в состоянии проталкивать по сосудам сгустившуюся кровь. При потере организмом более 12% влаги наступает смерть. 1. Какую функцию в живых организмах не выполняет вода? А) терморегуляторную Б) транспортную В) растворителя Г) каталитическую 2. Между молекулами воды образуются связи: А) водородные Б) ковалентные полярные В) ковалентные неполярные Г) ионные 3. Наибольшая доля воды в организме человека наблюдается на стадии: А) взрослого человека Б) пожилого В) новорождѐнного Г) эмбриона 4. Какие суждения верны? А) молекула воды не имеет заряженных участков Б) Молекула воды диполь В) На кислороде в молекуле воды небольшой отрицательный заряд, на водороде положительный Г) На кислороде в молекуле воды небольшой положительный заряд, на водороде отрицательный. 5. Вода имеет максимальную плотность при температуре: А) 0, Б) 4, В) 20, Г) 25 градусов. — Проверка результатов работы. — Игра снежный ком (учащиеся в классе воспроизводят устно полученную информацию, при этом каждый последующий ученик должен повторить информацию, высказанную предыдущими учениками) — Проверка теста(1-г, 2-а, 3-г, 4-б, в, 5-б). Другая группа неорганических соединений это минеральные соли Назовите известные вам минеральные соединения, входящие в состав клетки? Соли в живых организмах находятся в растворенном состоянии в виде ионов положительно заряженных катионов и отрицательно заряженных анионов. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много калия и очень мало натрия. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражительность клетки зависит от соотношения концентраций ионов Na+, K+, Ca2+, Mg2+.

6 В тканях многоклеточных животных Са2+ входит в состав межклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Определение понятия учащиеся записывают в тетрадях. 3. Применение знаний. -Решите тест, предложенный в начале урока. — Проверка результатов. 1-а, 2-б, 3-в, 4-б, 5-в, 6-б, 7-в, 8-а, 9-б, 10-а, 11-б, 12-в. 4. Рефлексия. — Какие цели вы ставили в начале урока? — Все ли цели были достигнуты? — Что у вас получилось лучше всего? — В чѐм причина неудач?

источник

Наука, которая изучает составные части и строение живой клетки, называется цитологией.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

Читайте также:  Тюменский наркологический диспансер семакова 11

К макроэлементам относятся водород, углерод, кислород и азот. На их долю припадает почти 98% всех составных элементов.

Микроэлементы имеются в количестве десятых и сотых долей процента. И совсем малое содержание ультрамикроэлементов – сотые и тысячные доли процента.

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Рис. 1 Содержание химических элементов в клетке

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому, что живая, что неживая природа состоит из одних и тех же элементов. Этим доказывается их взаимосвязь.

Несмотря на количественное содержание химического элемента, отсутствие или уменьшение хотя бы одного из них ведёт к гибели всего организма. Ведь у каждого из них есть своё значение.

Макроэлементы являются основой биополимеров, а именно белков, углеводов, нуклеиновых кислот и липидов.

Микроэлементы входят в состав жизненно важных органических веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет щелочную среду. Чаще всего она слабощелочная, ведь соотношение минеральных солей не изменяется.

Гемоглобин содержит железо, хлорофилл – магний, белки – серу, нуклеиновые кислоты – фосфор, обмен веществ происходит при достаточном количестве кальция.

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные– растворяются в воде;
  • Гидрофобные– не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме.

Чтобы наглядно понять, какие химические элементы входят в состав клетки, мы внесли их в следующую таблицу:

Макроэлементы

Кислород, углерод, водород, азот

Содержатся во всех органических веществах и воде.

Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.

Содержится в нуклеиновых кислотах, ферментах, костной ткани и зубной эмали.

Микроэлементы

Является основой белков, ферментов и витаминов.

Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.

Один из компонентов желудочного сока, провокатор ферментов.

Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.

Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.

Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.

Составная часть гемоглобина, хрусталика, роговицы, синтезирует хлорофилл. Транспортирует кислород по организму.

Ультрамикроэлементы

источник

Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды.

Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В12 гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Н2О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н2РО4 и НРО4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н2СО3 и НСО3 — . Анионы связывают ионы Н и гидроксид-ионы (ОН — ), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (

Углеводы, или сахариды – органические вещества с общей формулой (СН2О)n. У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (

4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Читайте также:  Наркологический диспансер свао на таймырской официальный

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц).

Нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, «узнают» (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО2 и Н2О освобождается большое количество энергии – 38,9 кДж (

9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти — растительном) мире — запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) — внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов — от одноклеточных диатомовых водорослей до гигантских акул — жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

источник

Химический состав клетки тесно связан с особенностями строения и функционирования этой элементарной и функциональной единицы живого. Как и в морфологическом отношении, наиболее общим и универсальным для клеток представителей всех царств является химический состав протопласта. Последний содержит около 80% воды, 10% органических веществ и 1% солей. Ведущую роль в образовании протопласта среди них имеют, прежде всего, белки, нуклеиновые кислоты, липиды и углеводы.

По составу химических элементов протопласт чрезвычайно сложен. В нем содержатся вещества как с небольшим молекулярным весом так, так и вещества с крупной молекулой. 80% веса протопласта составляют высоко молекулярные вещества и лишь 30% приходится на низкомолекулярные соединения. В то же время на каждую макромолекулу приходятся сотни, а на каждую крупную макромолекулы тысячи и десятки тысяч молекул.

В состав любой клетки входят более 60 элементов периодической таблицы Менделеева.

По частоте встречаемости элементы можно поделить на три группы:

Основные элементы. Это углерод (С), водород (Н), азот (N), кислород (О). Их содержание в клетке превышает 97%. Они входят в состав всех органических веществ (белков, жиров, углеводов, нуклеиновых кислот) и составляют их основу.

Макроэлементы. К ним относятся железо (Fе), сера (S), кальций (Са), калий (К), натрий (Na), фосфор (Р), хлор (Сl). На долю макроэлементов приходится около 2%. Они входят в состав многих органических и неорганических веществ.

Микроэлементы. Имеют самое большое разнообразие (их более 50-ти), но в клетке даже взятые все вместе они менее 1 %. Микроэлементы в чрезвычайно малых количествах входят в состав многих ферментов, гормонов или специфичных тканей, но определяют их свойства. Так, фтор (F), входит в состав зубной эмали, укрепляя ее. Йод (I) участвует в строении гормонащитовидной железы тироксина, магний (Мg) входит в состав хлорофилла растительной клетки, медь (Сu) и селен (Sе) встречаются в ферментах, защищающих клетки от мутаций, цинк (Zn) связан с процессами памяти (см. приложение № 20).

Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира.

Элементы Количество (в %):

В таблице приведены данные об атомном составе клеток. Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. Таким образом, в клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. На атомном уровне различий между химическим составом органического и неорганического мира нет. Различия обнаруживаются на более высоком уровне организации – молекулярном.

Все элементы клетки входят в состав различных молекул, образуют вещества, которые делятся на два класса: неорганические и органические.

Неорганические вещества имеют малый молекулярный вес, встречаются и синтезируются как в живой клетке, так и в неживой природе. В клетке эти вещества представлены главным образом водой и растворенной в ней солями.

Вода составляет около 70% клетки. Благодаря своему особому свойству поляризации молекул вода играет огромную роль в жизни клетки.

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Электрохимическая структура молекулы такова, что на кислороде имеется небольшой избыток отрицательного заряда, а на атомах водорода — положительного, то есть молекула воды имеет две части, которые притягивают другие молекулы воды разноименно заряженными частями. Это приводит к увеличению связи между молекулами, что в свою очередь определяет жидкое агрегатное состояние при температурах от 0 до 1000С, несмотря на относительно малый молекулярный вес. Вместе с тем, поляризованные молекулы воды обеспечивают лучшую растворимость солей.

Роль воды в клетке:

· Вода является средой клетки, в ней протекают все биохимические реакции.

· Вода осуществляет транспортную функцию.

· Вода является растворителем неорганических и некоторых органических веществ.

· Вода сама участвует в некоторых реакциях (например, фотолиз воды).

Соли находятся в клетке, как правило, в растворенном виде, то есть в виде анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов).

Важнейшими анионами клетки являются гидроскид (ОН — ), карбонат (СО3 2- ), гидрокарбонат (СО3 — ), фосфат (РО4 3- ), гидрофосфат (НРO4 — ), дигидрофосфат (Н2РO4 — ). Роль анионов огромна. Фосфат обеспечивает образование макроэргических связей (химических связей с большой энергией). Карбонаты обеспечивают буферные свойства цитоплазмы. Буферность — это способность поддерживать постоянной кислотность раствора.

К важнейшим катионам относятся протон (Н + ), калий (К + ), натрий (Nа + ). Протон участвует во многих биохимических реакциях, а так же своей концентрацией определяет такую важную характеристику цитоплазмы как ее кислотность. Ионы калия и натрия обеспечивают такое важное свойство клеточной мембраны как проводимость электрического импульса.

Клетка является той элементарной структурой, в которой осуществляются все основные этапы биологического обмена веществ и содержатся все основные химические компоненты живой материи. 80% веса протопласта составляют высокомолекулярные вещества — белки, углеводы, липиды, нуклеиновые кислоты, АТФ. Органические вещества клетки представлены различными биохимическими полимерами, то есть такими молекулами, которые состоят из многочисленных повторений более простых, сходных по структуре участков (мономеров).

2. Органические вещества, их строение и роль в жизнедеятельности клетки.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Другого ничего в природе нет,
Ни здесь, ни там в космических глубинах:
Все – от песчинок малых до планет –
Из элементов состоит единых.

Цели. Способствовать развитию интереса к химической и биологической наукам, углубить знания учащихся о неорганических веществах клетки, раскрыть межпредметные связи.
Оборудование. Схемы «Строение эукариотической клетки», «Уровни организации живой материи», «Элементы. Вещества клетки», опорный конспект «Диссоциация воды. рН».

УЧИТЕЛЬ БИОЛОГИИ. Все живые организмы – это биологические системы, имеющие сходные черты строения и жизнедеятельности. У них единый генетический код, близкие химический состав, строение молекул и клеток, однотипное строение тела на одинаковых уровнях организации. Такое единство живых организмов дает возможность построить общую систему уровней организации живой материи от молекулярного до биосферного согласно схеме:
Из этой схемы видно, что низшей ступенью организации является клетка, она обладает всеми свойствами живого. Клетка осуществляет обмен веществ и энергией, растет, размножается и передает по наследству свои признаки. Она реагирует на внешние раздражители и способна двигаться. Поэтому мы сегодня снова говорим о клетке.
Давайте вспомним, как называется наука о клетке. Это цитология. Исследуя клетку как важнейшую структурную единицу живого, цитология занимает центральное положение в ряду биологических дисциплин; она тесно связана с гистологией, анатомией, физиологией и биохимией. Мы вводим новый термин, поэтому запишите его формулировку в тетрадях.

Клетки различной формы, выполняющие разные функции:
1 – клетки кишечника; 2 – бактерии;
3 – диатомовая водоросль; 4 – мышечная клетка; 5 – нервная клетка;
6 – инфузория; 7 – клетки лука; 8 – жгутиконосец

Биохимия – это наука, изучающая входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции.
Биохимия связана с хозяйственной деятельностью человека и медициной. Принципиальное значение для развития биохимии имел первый синтез природного вещества – мочевины, подорвавший представление о «жизненной силе», якобы участвующей в синтезе организмов различных веществ. Используя достижения общей, аналитической и органической химии, биохимия в XIX в. сформировалась в самостоятельную науку. Здесь две науки – биология и химия – неразрывно связаны друг с другом.
Живой мир многообразен. Один из основоположников биохимии Макс Дельбрюк отметил: «Открытие деления и мутаций позволяет верить, что игра эволюции продолжается и разнообразие форм будет безгранично умножаться». Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях.

УЧИТЕЛЬ ХИМИИ. Сущность живого – это целая цепь хорошо организованных химических реакций. Так, в живой клетке протекает бесчисленное множество превращений одних молекул в другие, что создает энергетическую и материальную основу всего живого. Химические процессы в живых системах очень хорошо организованы, строго сбалансированы, точно обусловлена пространственная и временная очередность событий.
Науке свойственно стремление к познанию первооснов окружающего нас мира. (Учитель вращает глобус.) Две трети поверхности Земли покрыто водами рек, озер, морей, океанов. Океаны, колыбель жизни на Земле, с точки зрения химика, представляют собой водный раствор множества химических веществ. «Именно в этом растворе впервые развились живые организмы, и из этого раствора они получали ионы и молекулы, необходимые для их роста и жизни… – пишет в одной из своих работ лауреат Нобелевской премии американский химик Лайнус Полинг и продолжает: – С течением времени живые организмы развивались и изменялись, что позволило им покинуть водную среду и перейти на сушу и затем подняться в воздух. Они приобрели эту способность, сохранив в своих организмах водный раствор в виде жидкой составляющей ткани, плазмы крови, межклеточной жидкости, содержащей необходимый запас ионов и молекул».
«Химия вокруг нас» – это часто встречающееся утверждение неточно. Химия не только вокруг нас, но и внутри нас. Вся вселенная построена из химических элементов, которые составляют периодическую систему химических элементов Д.И.Менделеева. Они одни и те же и на Земле, и в глубинах космоса. В состав живых клеток входят 24 химических элемента периодической системы Д.И.Менделеева. Это –
С, Н, О, N, Fe, Mg, K, Na, Ca, S и др.
Химические элементы, входящие в состав клетки, подразделяются на макроэлементы, микроэлементы и ультрамикроэлементы. Какую же роль они играют в клетке?

Читайте также:  Ледис формула день ночь инструкция

Макроэлементы

• О, С, Н, N входят в состав органических веществ клетки. Вместе с водой организма они составляют около 90%.
• Р входит в состав ДНК, АТФ, ферментов, костной ткани и эмали зубов, содержание его в организме 1%.
• Катион Ca 2+ входит в состав оболочки клеток растений, костей и зубов у животных, также он участвует в процессе свертываемости крови. В организме бывает до 2,5% ионов кальция по массе.

Микроэлементы

• S* входит в состав белков, витаминов и ферментов, ее содержится
0,01–1%.
• Катионы K + и Na + участвуют в проведении нервного импульса, поддерживают осмотическое давление в клетке, стимулируют синтез гормонов, их содержание по 0,25%.
• Катион Mg 2+ (0,1%) входит в состав молекулы хлорофилла. Он содержится в костях и зубах, активизирует синтез ДНК и энергетический обмен.
• Катион железа входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активизирует деятельность ферментов (0,07%).
• Анион Cl – (0,2%) является компонентом желудочного сока, а анион
I – (0,1%) – обязательным компонентом гормона тироксина (щитовидная железа).

Ультрамикроэлементы

Ультрамикроэлементы участвуют в процессах кроветворения, фотосинтеза, катализируют внутриклеточные окислительные процессы.
• Катионы меди и марганца повышают урожайность растений, активизируют процессы фотосинтеза и кроветворения.
• Анионы бора влияют на процессы роста растений.
• Анионы фтора входят в состав эмали зубов.

Учитель биологии по схеме «Элементы. Вещества клетки» (см. с. 27) рассказывает о неорганических и органических веществах, содержащихся в живой клетке. Подтверждением сказанного служит демонстрационный опыт.

капельки воды (пары воды конденсируются на холодной стеклянной пластинке);
дым (сгорают органические вещества);
зола (неорганические вещества).
Учитель химии проводит беседу «Вещества живой клетки», пользуясь следующей схемой:

Вопрос. Как можно отличить органические вещества от неорганических?

УЧИТЕЛЬ БИОЛОГИИ. Вода – один из важнейших факторов внешней среды, от которого зависит здоровье людей.
Организм человека находится в состоянии постоянного обмена веществ с окружающей его средой. Различные неорганические и органические вещества непрерывно поступают в организм, претерпевают там многообразные превращения, а «отработанные», ненужные выводятся наружу, в окружающую среду.
Обмен веществ – один из главных признаков жизни. Существуют разные виды обмена веществ – углеводный, белковый, жировой и т.д. Обмен веществ включает в себя, конечно, и обмен воды. Совокупность процессов всасывания воды в желудке и кишечнике, распределение ее между тканями организма и выделение через почки, легкие, кожу – в этом и состоит сущность водного обмена.
Клетки и межклеточные вещества живых тканей представляют собой сложные системы, отдельные части которых содержат в качестве необходимого компонента воду. Почему же именно ее?
Вода – прекрасный растворитель для множества веществ живого организма, среда, в которой протекает большинство химических реакций, связанных с обменом веществ. При ее участии, с помощью водного обмена, происходит терморегуляция, т.е. регулируются процессы теплоотдачи и теплопродукции. С водой удаляются из организма ненужные ему продукты обмена, иногда микробы, их токсины и т.п.
Многие ученые считают, что человеческая жизнь, в известном смысле, представляет собой борьбу за воду. Почему же вода обладает такими свойствами? Это можно объяснить, исходя из строения молекулы воды.

УЧИТЕЛЬ ХИМИИ. Рассмотрим строение молекулы воды:
Н2О – молекулярная формула,
Н–О–Н – структурная формула,
электронная формула, характеризующая ковалентную полярную связь.

Молекула воды имеет угловое строение: представляет собой равнобедренный треугольник с углом при вершине 104,5°.
Молекулярная масса воды в парообразном состоянии равна 18 г/моль. Однако молекулярная масса жидкой воды оказывается более высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, вызванная водородными связями.

УЧИТЕЛЬ БИОЛОГИИ. Какова же роль воды в клетке?
Из-за высокой полярности молекул вода является растворителем других полярных соединений, не имея себе равных. В воде растворяется больше веществ, чем в любой другой жидкости. Именно поэтому в водной среде клетки осуществляется множество химических реакций. Вода растворяет продукты обмена веществ и выводит их из клетки и организма в целом.
Вода обладает большой теплоемкостью, т.е. способностью поглощать теплоту. При минимальном изменении ее собственной температуры выделяется или поглощается значительное количество теплоты. Благодаря этому она предохраняет клетку от резких изменений температуры. Поскольку на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).
Вода обладает высокой теплопроводностью. Такое свойство создает возможность равномерно распределять теплоту между тканями тела.
Вода является одним из основных веществ природы, без которого невозможно развитие органического мира растений, животных, человека. Там, где она есть, – есть жизнь. А какова роль воды в человеческом организме?

В состав человеческого тела входит около 65% воды. Это значит, что во взрослом человеке, который в среднем весит 70 кг, примерно 46 кг приходится на воду. Особенно богаты ею ткани молодого организма: в теле трехмесячного человеческого плода – 95% воды, у новорожденного ребенка – 70% (многие ученые одной из причин старения считают понижение способности белков организма связывать большие количества жидкости). Вода входит в состав всех органов и тканей человека; даже такая плотная ткань, как кость, содержит около 20% воды, в печени, мышцах, мозге – 70–80%, в крови – около 80%.
Просачиваясь с растворенными в ней солями через органические «стенки», разделяющие ткани, вода течет от более слабого раствора к более крепкому, пока концентрации обоих растворов не сравняются. Этот процесс, называемый осмосом, играет существенную роль в жизни человеческого организма; с его помощью живые клетки получают необходимые им вещества. Поддерживая осмотическое давление, вода участвует и в минеральном обмене.
Человек чрезвычайно остро реагирует на нарушение водного баланса. Так, при утрате влаги в размере 6–8% от веса тела он впадает в полуобморочное состояние. Потеря 10% влаги вызывает нарушение глотательного рефлекса, затем начинаются галлюцинации, в конце концов останавливается сердце – оно оказывается не в состоянии проталкивать по сосудам сгустившуюся кровь. При потере организмом более 12% влаги наступает смерть.
В норме из организма выделяется в сутки 2,5 л воды: через почки – около 50%, через легкие – 13%, через кишечник – 5%, остальная часть воды (примерно 32%) выделяется через кожу. Однако эти соотношения могут резко изменяться. Так, при заболевании сахарным диабетом почки начинают выделять до 8–10 л воды в сутки. Интенсивная физическая работа, пребывание в горах увеличивают количество воды, уходящей через легкие. При работе в горячих цехах или в жаркую погоду масса воды, теряемой через кожу, может достигать 6–10 л. Во всех этих случаях вследствие обезвоживания организма человек испытывает чувство жажды. Было установлено, что общее количество выделяемой из организма взрослого человека воды в норме должно равняться количеству вводимой, т.е. в среднем 2,5 л. В этом случае соблюдается состояние водного равновесия, нормальный баланс воды.

УЧИТЕЛЬ БИОЛОГИИ. Конечно, о воде можно говорить много. Действительно, ее роль в любом живом организме огромна. Но помимо воды в числе неорганических веществ клетки нужно назвать и соли. Соли находятся либо в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много калия и очень мало натрия. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражительность клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ .
Ребята, на схеме представлены основные результаты первой части урока.

В тканях многоклеточных животных Са 2+ входит в состав межклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей зависят осмотическое давление в клетке и ее буферные свойства.
Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне.

Определение понятия учащиеся записывают в тетрадях.
УЧИТЕЛЬ ХИМИИ. Рассмотрим уравнения реакций, протекающих в буферных растворах. (На магнитной доске карточка – анион слабой угольной кислоты H2CO3.)
Если в клетке увеличивается концентрация Н + , то происходит присоединение катиона водорода к карбонат-аниону:

+ Н + Н.

При увеличении концентрации гидроксид-анионов происходит их связывание:

Н + ОН – + Н2О.

Так карбонат-анион может поддерживать постоянную среду.
Предлагаю вам задание: имеется фосфат анион , покажите буферные свойства этого аниона.

(Ответ.

Познакомимся с понятием «водородный показатель рН» и оценим значения рН различных жидкостей в живом организме. Сначала рассмотрите опорный конспект, его I блок – «Вода – слабый электролит» (самостоятельная работа с опорным конспектом).
Затем познакомьтесь со II блоком – «Водородный показатель».
Учащиеся записывают опорный конспект в тетради.

I блок. Вода – слабый электролит

В очень малой степени вода распадается на ионы:

H2O H + + OH – .

В 1 л воды (t = 22 °C) диссоциации подвергается только 10 –7 моль Н2О, при этом образуется 10 –7 моль/л ионов H + и 10 –7 моль/л ионов ОН – .
Kв – ионное произведение воды:

Kв = [H + ]•[OH – ] = 10 –7 •10 –7 = 10 –14 .

Любой водный раствор содержит ионы Н + и ОН – .
Для чистой воды [H + ] = [OH – ] = 10 –7 .

II блок. Водородный показатель

Чтобы избежать неудобств с применением чисел с отрицательными показателями степени, концентрацию водородных ионов выражают через водородный показатель рН – десятичный логарифм концентрации водородных ионов, взятый с обратным знаком:

рН = –lg [H + ] или [H + ] = 10 –рН ,

где [H + ] – концентрация ионов водорода, моль/л.
Понятие «водородный показатель» введено датским химиком С.П.Л.Сёренсеном в 1909 г.

Задание. Определите среду следующих жидкостей: желудочный сок (рН = 1,7), кровь (рН = 7,4),
слюна (
рН = 6,9), слезы (рН = 7).

1. Сколько химических элементов можно обнаружить в клетке?
а) 24; б) 60; в) 150.

2. Какие химические элементы, содержащиеся в клетке, относят к макроэлементам?
а) S, Na, Ca, K; б) O, H, C, N; в) Ni, Cu, I, Br.

3. В каких клетках человека больше всего воды?
а) Жировых; б) костных; в) нервных.

4. Каковы функции воды в клетке?
а) Передача наследственной информации;
б) среда для химических реакций;
в) источник энергии.

5. К гидрофобным веществам относят:
а) соли; б) сахар; в) жиры.

6. Какие ионы входят в состав гемоглобина?
а) Mg 2+ ; б) Fe 2+ ; в) Zn 2+ .

7. На каком уровне организации наблюдаются различия между органическим и неорганическим миром?
а) Атомарный; б) молекулярный; в) клеточный.

8. Больше всего воды содержится в клетках:
а) эмбриона; б) молодого человека; в) старика.

9. Вода – основа жизни, т.к. она:
а) может находиться в трех состояниях (жидком, твердом и газообразном);
б) является растворителем, обеспечивающим как приток веществ в клетку, так и удаление из нее продуктов обмена;
в) охлаждает поверхность при испарении.

10. Вещества, хорошо растворимые в воде, называются:
а) гидрофильными; б) гидрофобными; в) амфифильными.

11. Угол между валентными связями Н–О–Н в молекуле воды составляет:
а) 90°; б) 104,5°; в) 120°.

12. Чем объясняется относительное постоянство реакции среды содержимого клетки?
а) Тургором; в) осмосом; в) буферностью.

(Ответы. 1 – а; 2 – б; 3 – в; 4 – б; 5 – в; 6 – б;
7 – в; 8 – а; 9 – б; 10 – а; 11 – б; 12 – в.)

УЧИТЕЛЬ БИОЛОГИИ. Подведем итоги нашего урока. В состав живых организмов входит ряд относительно простых соединений, которые встречаются и в неживой природе. Это неорганические соединения. И конечно, первоочередная роль среди этих соединений принадлежит воде. Она обладает уникальными свойствами. Свойства эти настолько важны, что нельзя представить жизнь живых организмов без этого соединения водорода и кислорода.

* По другим источникам S, К, Mg относят к макроэлементам, а все остальные приводимые элементы – к микроэлементам. – Примеч. ред.

источник

Понравилась статья? Поделить с друзьями: