Работа и утомление мышц кратко

Химизм мышечного сокращения

Теория мышечного сокращения

Сокращение — это изменение механического состояния миофибриллярного аппарата мышечных волокон под влиянием нервных импульсов.

Современная теория мышечного сокращения получила название теории скользящих нитей. Согласно этой теории “скольжения” в основе сокращения лежит взаимодействие между актиновыми и миозиновыми нитями миофибрилл вследствие образования поперечных мостиков между ними.

Во время скольжения сами актиновые и миозиновые нити не укорачиваются, но длина саркомера изменяется. В расслабленной, а тем более растянутой мышце активные нити располагаются дальше от центра саркомера, и длина саркомера больше. При изотоническом сокращении мышцы актиновые нити скользят по направлению к центру саркомера вдоль миозиновых нитей. Суммарное укорочение всех саркомеров вызывает укорочение миофибрилл, и мышца сокращается.

Непосредственным прямым источником свободной химической энергии для сокращения мышц является АТФ, которая подвергается гидролитическому расщеплению до АДФ и неорганического фосфата во время сокращения мышцы. Ресинтез АТФ происходит в результате расщепления креатинфосфата на креатин и фосфорную кислоту. Креатинфосфата в мышцах содержится больше, чем АТФ (около 30 ммоль/л). При интенсивной мышечной работе запасы креатинфосфата так же быстро истощаются, и в этих условиях ресинтез АТФ может осуществляться только за счет реакции гликолиза и тканевого дыхания.

При интенсивной мышечной нагрузке большой расход АТФ не покрывается доставкой обычных субстратов и кислорода кровью. В этих условиях энергетическим субстратом становится резервный полисахарид мышц — гликоген.

В аэробных условиях часть молочной кислоты окисляется в цикле Кребса до СО2 и Н2О при одновременном образовании АТФ. Большая же часть молочной кислоты в процессе гликогенеза снова превращается в гликоген.

Когда органы дыхания и кровообращения не могут полностью обеспечить мышцы необходимым количеством кислорода, возникает кислородная задолженность.

Теплообразование при мышечной работе

При мышечном сокращении выделяется энергия. 30 % — механическая и 70 % — тепловая (из них 40 % образуется при сокращении мышц, а 60 % — при расслаблении).

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила — мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом — максимальным напряжением, которое она может развить (статическая сила).

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см 2 .

Сравнительным показателем силы разных мышц является абсолютная мышечная сила — отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон.

При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Утомление мышц. Утомление — временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя об истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость.

источник

В организме мышцы никогда не бывают полностью расслаблены. Даже когда мышцы не работают, они находятся в некотором напряжении — тонусе, благодаря чему обеспечивают устойчивость тела и равновесие.

Работа мышц может быть измерена произведением массы поднятого груза на высоту его поднятия. Работа мышцы равна нулю, если она сокращается без груза. При увеличении массы груза работа возрастает до определенного уровня, а затем начинает снижаться. При своем сокращении мышца способна поднять большой груз, который во много раз превосходит массу самой мышцы. Сила мышцы измеряется максимальной массой груза, который она может поднять, и зависит от числа ее мышечных волокон и их толщины. Наибольшую работу по поднятию или переносу груза человек может совершить, если груз не очень тяжел и не слишком легок. Если груз очень большой и мышца не может его поднять, работа также становится равной нулю. Большое значение имеет ритм работы: и очень быстрая, и очень медленная работа быстро приводит к утомлению, в результате объем выполненной работы значительно снижается. При среднем для данной мышцы грузе и разном ритме его поднятия наибольшей окажется работа мышцы при среднем ритме сокращений. Влияние темпа и нагрузки мышц на их работоспособность установлено русским физиологом И. М. Сеченовым. Средние величины нагрузок и темпа неодинаковы для разных людей и зависят от их профессии.

Мышцы сокращаются в ответ на различные раздражения. В процессе мышечного сокращения участвуют АТФ, белки миофибрилл и ионы кальция. При раздражении мышцы ионы кальция устремляются внутрь мышечного волокна и активируют белок миозин. В результате этого АТФ расщепляется на АДФ и фосфорную кислоту и освобождается энергия, которая идет на сокращение мышцы. Тонкие нити миофибрилл втягиваются в промежутки между толстыми, что приводит к укорочению миофибрилл и сокращению мышцы. Энергия, необходимая для синтеза АТФ, освобождается в результате гликолиза — расщепления глюкозы до молочной кислоты и дальнейшего ее распада с участием кислорода до СО2 и Н2О. При тяжелой мышечной работе благодаря нервной регуляции усиливаются функции дыхания и кровообращения, в результате чего улучшается снабжение мышц кислородом и глюкозой.

При длительной работе возникает утомление, которое развивается тем быстрее, чем больше нагрузка на мышцы и чаще их сокращение. Снижение работоспособности мышц обусловлено двумя основными причинами. Первой является накопление в мышцах в связи с недостатком кислорода недоокисленных продуктов обмена (молочной кислоты и др.). Они вызывают утомление нервных центров, управляющих работой мышц. Второй причиной является истощение в мышцах энергетических запасов (в первую очередь гликогена), так как при длительной интенсивной работе кровь не успевает снабжать мышцы питательными веществами. Когда мышца прекращает работу и находится в состоянии покоя, кровь выносит из нее продукты обмена, приносит кислород и питательные вещества, и работоспособность мышцы восстанавливается. В основе рациональной организации физического труда лежит правильная дозировка нагрузки и ритма работы.

Систематическая интенсивная работа мышц приводит к усилению кровоснабжения мышц и костей, к которым они прикрепляются. В результате увеличивается масса мышечной ткани, что влечет за собой усиленный рост кости. Слабые мышцы плохо поддерживают туловище в нужном положении, появляются сутулость, искривление позвоночника, которые нарушают нормальную деятельность сердечно-сосудистой системы, органов дыхания и пищеварения. При хорошем развитии мышц прочнее становится скелет и крепче здоровье. Для предупреждения развития плоскостопия (уплощение свода стопы) в период роста организма нельзя носить тесную обувь, а также длительно носить обувь на высоком каблуке. Высокие каблуки способствуют развитию патологических отклонений в строении стопы и функции нижней конечности, так как центр тяжести переносится на более слабую переднюю часть стопы. В этих условиях расслабляются связки стопы и передние мышцы голени, возможны растяжения и разрывы связок, вывихи. При плоскостопии у людей во время ходьбы и при длительном стоянии возникает боль в своде стопы. Таким образом, физические упражнения и соблюдение гигиенических требований к ношению обуви способствуют правильному формированию скелета и помогают сохранить здоровье.

источник

Измерение жизненной емкости легких.

1. Группа мышц:

Мышцы, сокращаясь или напрягаясь, производят работу. Она может выражаться в перемещении тела или его частей. Такая работа совершается при поднятии тяжестей, ходьбе, беге. Это динамическая работа. При удерживании частей тела в определенном положении, удерживания груза, стоянии, сохранении позы совершается статическая работа. Одни и те же мышцы могут выполнять и динамическую, и статическую работу.

Работа мышц.

Сокращаясь, мышцы приводят в движение кости, действуя на них, как на рычаги. Кости начинают двигаться вокруг точки опоры под влиянием приложенной к ним силы.

Движение в любом суставе обеспечивается как минимум двумя мышцами, действующими в противоположных направлениях. Их называют мышцы-сгибатели и мышцы-разгибатели. Например, при сгибании руки двуглавая мышца плеча сокращается, а трехглавая мышца расслабляется. Это происходит потому, что возбуждение двуглавой мышцы через центральную нервную систему вызывает расслабление трехглавой мышцы.

Скелетные мышцы прикрепляются с двух сторон от сустава и при своем сокращении производят в нем движение. Обычно мышцы, осуществляющие сгибание, — флексторы — находятся спереди, а производящие разгибание — экстензоры — сзади от сустава. Только в коленном и голеностопном суставах передние мышцы, наоборот, производят разгибание, а задние — сгибание.

Причина их утомления:

Вызывается накоплением в них продуктов обмена (фосфорной, молочной кислот), понижающих возбудимость мембран мышечных клеток. Кроме того, происходит истощение энергетических запасов (гликогена, АТФ) и утомление нервных центров, управляющих работой мышц. После некоторого периода отдыха мышцы восстанавливают свою работоспособность. При выполнении статической работы мышцы утомляются быстрее, чем при динамической работе.

2.С целью оценки функционального состояния дыхательной системы производится измерение жизненной емкости легких с помощью специального прибора — спирографа.

Жизненная емкость легких (ЖЕЛ) — величина, равная объему воздуха, который пациент может выдохнуть после максимально глубокого вдоха. ЖЕЛ характеризует состояние аппарата внешнего дыхания, позволяет оценивать физическое развитие детей и подростков, диагностировать различные заболевания.

Процедура определения жизненной емкости легких называется спирография. Проведение манипуляции требует от медицинской сестры знаний об устройстве и принципах работы аппарата, а также навыков исследования пациентов.

Опорно-двигательная система: ее функции. Скелет, его отделы.

Заболевания желудочно-кишечного тракта и их предупреждение.

1. Скелет человека— совокупность костей человеческогоорганизма, пассивная часть опорно-двигательного аппарата. Служит опорой мягким тканям, точкой приложения мышц (система рычагов), вместилищем и защитой внутренних органов. Костная тканьскелета развивается из мезенхимы.

1.

Классификация заболеваний желудочно-кишечного тракта

Все заболевания пищеварительного тракта по природе происхождения делят на две большие группы:

По локализации патологического процесса выделяют болезни следующих органов:

· Кишечника (тонкого и толстого)

Кроме того заболевания ЖКТ бывают приобретенными и наследственными, острыми и хроническими.

Острые кишечные заболевания в основном имеют бактериально-инфекционную природу и развиваются на фоне отравлений, аллергических реакций или некоторых патологических состояний (вирусный гепатит, эзофагит).

Хронические воспалительные процессы, такие как гастрит, колит, холецистит, развиваются на фоне длительного нарушения режима питания, употребления некачественных и вредных продуктов. Причем такие хронические болезни редко протекают изолированно, в большинстве случаев в воспалительный процесс вовлекается весь пищеварительный тракт. Рассмотрим подробнее наиболее распространенные патологические состояния ЖКТ.

Физикальное обследование

1. Пальпация подразумевает прощупывание внутренних органов через брюшную полость. Метод основан на осязательных ощущениях и позволяет пальцами исследовать положение органов, их форму, консистенцию, подвижность и болезненность.

2. Аускультация – это прослушивание внутренних органов с помощью фонендоскопа или стетоскопа.

3. Перкуссия – метод, позволяющий с помощью постукивания на различных участках тела определить физическое состояние и топографию внутренних органов.

Дата добавления: 2018-08-06 ; просмотров: 909 ; ЗАКАЗАТЬ РАБОТУ

источник

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила — мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом — максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы — длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83 ).

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:

А — параллельноволокнистый тип; Б — одноперистый; В — двуперистый; Г — многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила — отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление — временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной, фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Читайте также:  Когда утомление переходит в переутомление

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)­, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха , т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы — адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Работа мышц. В основе работы мышц лежит их способность к со­кращению. Сокращаясь, мышца укорачивается, в результате чего про­исходит сближение точек начала и прикрепления мышцы. Сокращение мышц вызывает движения в суставах, изменение положения частей те­ла или, наоборот, закрепление их. Действуя с определенной силой на кости скелета, мышца изменяет по­ложение костных рычагов, совершает механическую работу, которая может быть динамической или статической.

Рис. 31. Схема действия мышц на костные рычаги:

I – рычаг равновесия, II – рычаг силы, III – рычаг скорости; А – точка опоры, 5 – точка приложения силы, В – точка сопротивления

При динамической работе костные рычаги, а вместе с ними и другие части тела перемещаются в прост­ранстве, изменяется их взаиморасположение. При статической работе тело и его части находятся в состоянии покоя. Мышцы при статической работе хотя и напряжены, но их длина не изменяется, они не укорачиваются. Такое сокращение мышц без изменения их длины называют изометрическим сокращением.

Кости скелета, соединенные суставами, при сокращении мышц действуют как рычаги. Выделяют рычаг первого рода и рычаг второго рода (рис. 31). У рычага первого рода точка приложения силы (мышечного сокращения) и точка сопротивления (тяжесть части тела, переносимый груз) находятся по разные стороны от точки опоры (оси сустава). При­мером может служить голова, кото­рая опирается на I шейный позво­нок – атлант (точка опоры). По одну сторону от атлантозатылочного сочленения действует сила тяжести лицевого черепа, по другую – сила действия затылочных мышц, при­крепляющихся к затылочной кости. Равновесие головы может быть при условии, если вращающий момент прилагаемой силы затылочных мышц (произведение силы, действующей на затылочную кость, на длину плеча, равного расстоянию от точки опоры до точки приложения силы) будет равен вращающему моменту силы тя­жести передней части головы (про­изведение силы тяжести на длину плеча, равного расстоянию от точки опоры до точки приложения силы тяжести).

Рычаг второго рода, у которого и точка приложения мышечной силы, и точка силы тяжести расположены по одну сторону от точки опоры, бывает двух видов. У первого вида рычага второго рода плечо прило­жения мышечной силы (место при­крепления ахиллова сухожилия к пяточной кости) длиннее плеча при­ложения (действия) силы тяжести (голеностопный сустав). У второго вида рычага второго рода плечо приложения мышечной силы (место прикрепления двуглавой мышцы пле­ча к лучевой кости) короче пле­ча действия силы тяжести (кисти). Для преодоления силы тяжести необходимо приложить значитель­ную мышечную работу. В то же время имеется выигрыш в размахе движения и скорости перемещения предплечья и кисти.

Силу мышц определяют по вели­чине того груза, который мышца при своем максимальном сокращении может поднять на определенную вы­соту. Такую силу принято называть подъемной силой мышцы. Сила раз­ных мышц неодинакова. Она зави­сит от числа мышечных волокон от площади поперечного сечения этих волокон. Сравнивая равновеликие веретенообразную мышцу с продоль­ным направлением длинных мышеч­ных волокон и перистую мышцу с косым направлением большего числа коротких мышечных волокон, мы установим, что перистая мышца сильнее. Показателем силы мышцы служит ее физиологический поперечник – площадь поперечного сечет всех ее мышечных волокон (рис. 32). Величину (размеры) мышцы характеризует ее анатомический поперечник, – поперечное сечение мышцы наиболее широкой ее части.

Вращающая сила мышцы зависит не только от ее физиологического поперечника и подъемной силы, но и от угла прикрепления мышцы к костям. Чем больше угол,покоторым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к костям служат блоки.

Рис. 32. Схема анатомическо­го и физиологического попе­речников мышц различной формы: 1 – лентовидная мышца, 2 – веретенообразная мышца, 3 – одноперистая мышца (сплошной линией обозначен анатомический поперечник мышц, прерывистой – фи­зиологический поперечник)

Мышечный тонус. В покое каждая мышца человека находится в состоя­нии постоянного непроизвольного сокращения – тонуса, который под­держивается рефлекторно за счет по­ступающих в мышцу нервных им­пульсов. Это небольшое напряжение мышц тела необходимо для поддер­жания их стартового состояния, со­противления растяжению, готовности

к действию. Длительное, судорожное сокращение мышцы, продолжающееся, несмотря на прекращение раздра­жения, называют контрактурой.

Управление движением. Способ­ность животных, в том числе и че­ловека, передвигаться и выполнять различные действия под контролем нервной системы – одна из важнейших особенностей, отличающих жи­вотных от растений. Сокращение мышечных волокон происходит под влиянием импульсов, приходящих из головного и спинного мозга по нерв­ным волокнам (отросткам двигательных нейронов). Сокращаясь, мышцы обеспечивают движение. При этом они никогда не работают изолиро­ванно, в одиночку. Выполнение лю­бого движения достигается согласо­ванным действием групп мышц, как сгибателей, так и разгибателей. На­пример, вертикальное положение те­ла человека обеспечивают до 150 мышц.

В зависимости от направления усилий, развиваемых мышцами, их принято делить на синергисты и анта­гонисты. Мышцы, которые действуют на сустав в одном направлении (на­пример, сгибают кисть), получили название мышц-синергистов, мышцы противоположного действия явля­ются мышцами-антагонистами. При каждом движении сокращаются не только мышцы, совершающие его, но и их антагонисты, противодейст­вующие тяге и тем самым при­дающие движению точность и плав­ность. В каждой группе мышц мож­но выделить главные мышцы, вы­полняющие это движение, и вспо­могательные, которые уточняют, «мо­делируют» это движение, придают ему индивидуальные особенности.

Скелетные мышцы человека спо­собны сокращаться, подчиняясь его воле. Такие движения называют произвольными. Движения этого типа отличаются от рефлекторных (не­произвольных движений), которые выполняются помимо воли человека, например, если человек, неосторож­но коснувшись раскаленной плиты, отдергивает руку, еще не успев осо­знанно почувствовать боль. При про­извольных движениях нервные им­пульсы к скелетным мышцам посту­пают из двигательных центров коры большого мозга. Непроизвольные движения управляются из соответ­ствующих центров ствола головного и спинного мозга.

Мышечные волокна сокращаются только по приказу двигательных ней­ронов. Двигательный нейрон и его длинный отросток – аксон вместе с мышечными волокнами, которые он контролирует, называют двигатель­ной единицей.

Двигательные нейроны ствола го­ловного мозга и передних рогов спин­ного мозга контролируются нейрона­ми двигательной зоны коры полу­шарий большого мозга.

Источником активации нейронов двигательной зоны коры полушарий большого мозга является зрительная, слуховая, кожная, мышечная инфор­мация, поступающая в кору от ор­ганов чувств. На основе ее двига­тельная зона коры формирует осоз­нанный двигательный акт.

Утомлением называют временное понижение работоспособности клет­ки, органа или организма в целом, наступающее в результате работы и исчезающее после отдыха. Разви­тие утомления в двигательном аппа­рате при длительной или напря­женной работе зависит от несколь­ких факторов. Прежде всего, утом­ление связано с процессами, разви­вающимися в нервной системе, в нервных центрах, участвующих в уп­равлении двигательной деятель­ностью.

Ряд причин развития утомления связан с процессами, происходящи­ми в самой мышце. Это накопление в ней продуктов обмена (молочной кислоты и др.), оказывающих угне­тающее действие на работоспособ­ность мышечных волокон, и умень­шение в них энергетических запасов (гликогена).

Скорость развития утомления при мышечной работе зависит от двух показателей – от физической на­грузки и от ритма работы, т. е. от частоты мышечных сокращений. При увеличении нагрузки или при уча­щении ритма мышечных сокращений утомление наступает быстрее. Мы­шечная работа достигает максималь­ного уровня при средних нагрузках и средних скоростях сокращения мышц.

Физическое утомление – нор­мальное физиологическое явление. После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. Ра­ботоспособность быстрее восста­навливается при активном отдыхе. чем при полном покое. Впервые оте­чественный ученый-физиолог И. М. Се­ченов в 1903 г. показал, что вос­становление работоспособности утом­ленной мышцы правой руки проис­ходит быстрее, если в период отдыха производить работу левой рукой. В отличие от простого покоя такой от­дых был назван И. М. Сеченовы» активным. Им были заложены ос­новы гигиены труда, имеющие зна­чение для рациональной организа­ции трудовых процессов.

1. Какую работу называют динамической, какую – статической. Приведите примеры.

Дата добавления: 2015-10-01 ; просмотров: 3277 | Нарушение авторских прав

источник

Механизм мышечного сокращения и расслабления.

Возникновение потенциала действие.

Проведение возбуждения вдоль клеточной мембраны до Z мембраны, а далее вглубь волокна по трубочкам саркоплазматического ретикулума.

Диффузия Са к протофибриллам.

Взаимодействие Са с тропонином.

Конформационное изменение комплекса тропомиозин-тропонин.

Освобождение активных центров актина.

Присоединение актина к миозину.

В присутствии белка актомиозина распад АТФ с освобождением энергии.

Скольжение нитей актина относительно миозина.

Активация кальциевого насоса.

Понижение концентрации свободных ионов Са в саркоплазме.

Разрушение актин-миозиновых комплексов.

Обратное скольжение нитей актина относительно миозина.

Увеличение (восстановление) миофибриллы.

Работа и сила мышц. Величина сокращения (степень укорочения) мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращенные мышцы расслабляются. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает.

Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения. Эта сила может быть очень велика. Так, установлено, что собака мышцами челюсти может поднять груз, превышающий вес ее тела в 8,3 раза. Одиночное мышечное волокно может развивать напряжение, достигающее 100-200 мг. Учитывая, что общее число мышечных волокон в теле человека равно приблизительно 15-30 млн., они могли бы развить напряжение в 20-30 тонн, если бы все они одновременно тянули в одну сторону.

Сила мышц при прочих равных условиях зависит от ее поперечного сечения. Чем больше сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. При этом имеется ввиду т.н. физиологическое поперечное сечение, когда линия сечения идет перпендикулярно мышечным волокнам, а не мышце в целом. Сила мышц с косыми волокнами больше, чем с прямыми, так как физиологическое ее сечение больше при одинаковом геометрическом. Чтобы сравнить силу разных мышц, максимальный груз (абсолютная сила мышцы), который мышца в состоянии поднять, делят на площадь физиологического поперечного сечения (кг/см.кв.) Таким образом вычисляют удельную абсолютную силу мышцы. Для икроножной мышцы человека она равна 5,9 кг/см.кв., сгибателя плеча — 8,1 кг/см.кв., трехглавой мышцы плеча — 16,8 кг/см.кв.. Работа мышц измеряется произведением поднятого груза на величину укорочения мышцы. Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая закономерность. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при некоторых средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила (закона) средних нагрузок.

Работа мышц, при которой происходит перемещение груза и движение костей в суставах, называется динамической. Работа мышцы, при которой мышечные волокна развивают напряжение, но почти не укорачиваются — статической. Пример — вис на шесте. Статическая работа более утомительна, чем динамическая.

Утомление мышцы. Утомлением называется временное понижение работоспособ-

ности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не сойдет до нуля. Регистрируется кривая утомления. Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения, удлиняется период расслабления мышцы и увеличивается порог раздражения, т.е. понижается возбудимость. Все эти изменения возникают не сразу после начала работы, существует некоторый период, в течение которого наблюдается увеличение амплитуды сокращений и небольшое повышение возбудимости мышцы. При этом она становится легко растяжимой. В таких случаях говорят, что мышца «врабатывается», т.е. приспосабливается к работе в заданном ритме и силе раздражения. После периода врабатываемости наступает период устойчивой работоспособности. При дальнейшем длительном раздражении наступает утомление мышечных волокон.

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (фосфорная кислота, связывающая Са++, молочная кислота и др.), оказывающие угнетающее действие на работоспособность мышцы. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД. Так, если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.

Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительной работе резко уменьшается содержание в мышце гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и КФ, необходимых для осуществления сокращения.

Следует оговорить, что в естественных условиях существования организма утомление двигательного аппарата при длительной работе развивается совершенно не так, как в эксперименте с изолированной мышцей. Обусловлено это не только тем, что в организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней необходимые питательные вещества и освобождается от продуктов обмена. Главное отличие состоит в том, что в организме возбуждающие импульсы приходят к мышце с нерва. Нервно-мышечный синапс утомляется значительно раньше, чем мышечное волокно, в связи с быстрым истощением запасов наработанного медиатора. Это вызывает блокаду передачи возбуждений с нерва на мышцу, что предохраняет мышцу от истощения, вызываемого длительной работой. В целостном же организме еще раньше утомляются при работе нервные центры, (нервно-нервные контакты).

Роль нервной системы в утомлении целостного организма доказывается исследованиями утомления в гипнозе (гиря-корзина), установлением влияния на утомления «активного отдыха», роли симпатической нервной системы (феномен Орбели-Гинецинского) и др..

источник

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. Изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

3. Ауксотонические сокращения. Изменяются и длина, и тонус мышцы. С помощью их происходит передвижение тела и другие двигательные акты.

Максимальная сила мышц – это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, а также пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения – это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а, следовательно, и сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

Читайте также:  При чтении книг в движущимся транспорте происходит утомление мышц

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании сила также увеличивается, а при охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами (кистевым, становым и т.д.).

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной силе, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 62 кг/см 2 , трехглавой – 16,8 кг/см 2 , жевательных – 10 кг/см 2 .

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А=М·h). Работа измеряется в кг·м, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы — это работа выполняемая в единицу времени (Р=А·Т). Единица измерения – ватт (Вт).

Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается. Чем выше частота, сила раздражения и величина нагрузки, тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда. Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура – это состояние длительного, непроизвольного сокращения мышцы.

Работа и утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1. Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце.

2. Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

Действительно, эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным.

В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

источник

Сила мышц – это величина напряжения, которое может развить мышечное волокно. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола, возраста, степени тренированности человека.

Выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а, следовательно, сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме. Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р * h). Работа измеряется в кГ.М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается.

Утомление мышц.

Утомление – это временное снижение работоспособности мышц в результате работы. Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление.

В некоторых случаях полного расслабления не наступает. Развивается контрактура. Это состояние длительного непроизвольного сокращения мышцы. Работа и утомление мышц исследуются с помощью эргографии.

В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1.Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце.

2.Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3.Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода.

Однако в организме, интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления.

В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

Двигательные единицы, их классификация

Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон.

Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые. Они образованы «красными» мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.

IIВ. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются «белыми». Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

IIA. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

источник

Физическое утомление — временное понижение или прекращение работоспособности мышц, вызванное их работой. Утомление регистрируется на эргограмме; оно проявляется в том, что снижается высота сокращения мышцы или происходит полное прекращение ее сокращений. При утомлении мышца нередко не может полностью расслабиться и остается в состоянии длительного укорочения (контрактуры). Утомление является сначала результатом изменений функций нервной системы, и прежде всего головного мозга, нарушения передачи нервных импульсов между нейронами и между двигательным нервом и мышцей, а затем уже следствием изменения функций самой мышцы.

Так как при утомлении понижаются функции нервной системы и рецепторов мышц, суставов и сухожилий, то наступают нарушения координации движений.

Мышечное утомление является результатом не только изменения функций нервной и мышечной систем, но и изменения регуляции нервной системой всех вегетативных функций.

Утомление при динамической работе наступает в результате изменения обмена веществ, деятельности желез внутренней секреции и других органов и в особенности сердечно-сосудистой и дыхательной систем. Снижение работоспособности сердечно-сосудистой и дыхательной систем нарушает кровоснабжение работающих мышц, а следовательно, доставку кислорода и питательных веществ и удаление остаточных продуктов обмена веществ.

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины груза (нагрузки). Увеличение нагрузки и учащение ритма ускоряет наступление утомления.

При утомлении нередко появляется усталость — ощущение утомления, которое отсутствует, если работа вызывает интерес. Наоборот, когда работа производится без интереса, усталость наступает раньше и она больше, хотя признаки утомления отсутствуют. Способность приходить в состояние утомления называется утомляемостью. Утомление вызывается также обстановкой, в которой оно раньше возникало. Если же работа была интересной и не вызывала усталости и утомления, то обстановка, в которой она производилась, не вызывает усталости и утомления. Изменение обстановки, в которой многократно возникало утомление, или многодневный, длительный отдых приводят к исчезновению условного рефлекса на утомление.

Мышечное утомление является нормальным физиологическим процессом. Восстановление работоспособности мышц происходит уже во время выполнения работы. После окончания работы работоспособность не только восстанавливается, но и превышает исходный ее уровень до работы.

Рис. 32. Изменение работоспособности в дни отдыха после предельной работы

Утомление нужно отличать от переутомления.

Переутомление — нарушение функций организма, патологический процесс, вызванный хроническим утомлением, суммированием утомления, так как отсутствуют условия для восстановления работоспособности организма.

Важно предупредить появление переутомления. Наступлению переутомления способствуют антигигиенические условия труда, физических упражнений, внешней среды, нарушение питания.

При переутомлении появляются хронические головные боли, большая раздражительность, апатия, вялость, днем сонливость, нарушение сна ночью и бессонница, ухудшение аппетита, мышечная слабость. Нарушается координация мышечной работы и вегетативных функций, происходят снижение обмена веществ и падение веса тела, учащение, а иногда значительное замедление сердцебиений, понижение кровяного давления, уменьшение дыхательного объема и др. Нет желания заниматься трудом, физической культурой и спортом, особенно тем его видом, который вызвал переутомление.

Создание нормальных гигиенических условий физического труда и физических упражнений, переключение на новый интересный вид физического труда и спорта, перевод в другую обстановку, длительный отдых, увеличение времени пребывания на свежем воздухе и сна, улучшение питания, прием углеводов и витаминов устраняют переутомление.

Причины мышечной усталости и болевых ощущений (www.sportobzor.ru)

Болевые ощущения в мышечных тканях могут возникать как в период физической нагрузки, так и в состоянии покоя.

После нагрузки, в принципе, боль в мышцах – это вполне нормальное состояние организма, не требующее специального лечения и не вызывающее чувство беспокойства.

Если боли возникают, без определенной понятной причины, тогда следует обратиться к специалисту для выяснения точного диагноза. Мышечную слабость могут вызывать ряд различных обстоятельств, описанных ниже.

    Травмы и переломы – основные факторы мышечной боли.

При травмах мягких или костно-хрящевых тканей, боль является ответной реакцией. Как правило, при таких факторах врач назначает средство, которое будет снимать напряжение мышцы и успокаивать болевые ощущения.
Физическая нагрузка, при которой мышечная масса находится в напряжении. В этот период в мышцах собирается молочная кислота, и чем больше нагрузка, тем больше кислоты образуется в мышце.

После того, когда мышечные структуры начинают расслабляться, кислота раздражает нервные окончания и возникает дискомфортное ощущение. В этом случае, стакан воды со щепоткой соды поможет уменьшить болевые ощущения, возникающие в результате напряжения.
Стресс. При моральном расстройстве и стрессовых нагрузках появляется ощущение дискомфорта в мышцах.

Чаще всего боль в связках возникает ночью и утром. В науке такое явление называется фибромиалгия – форма миалгии. Чаще всего сковывает шейный отдел позвоночника, колени и поясницу.
Неправильная осанка.

В результате неправильной осанки происходит деформация костно-хрящевых тканей, которые автоматически «тянут» за собой мышцы. В результате этого возникает ощущение жжения вдоль мышечных волокон.

  • Хронические заболевания костно-хрящевых тканей и сосудов:
    • артрит, артроз, остеохондроз – первые причины, вызывающие боль в мышцах и постоянное чувство усталости. Разрушение костных тканей влечет за собой деформацию в мышечных и мягких тканях;
    • плоскостопие – проблема, при которой стопы становятся плоскими и это значительно утруждает процесс ходьбы.

    При этом могут возникнуть мышечные боли в ногах от ступни до колена;

  • тромбофлебит и варикозное расширение вен – сосудистые заболевания, при которых нарушается венозная эластичность и возникают кровяные закупорки. Воспаленные вены, как правило, «вылазят» наружу и причиняют сильную боль. Может наблюдаться ощущение жжения и сильного мышечного дискомфорта по всей длине пораженной вены;
  • невралгия также часто становится причиной мышечной усталости.

    Приступы, возникающие в результате нарушения работы периферической нервной системы, вызывают сильную слабость. В состоянии покоя мышцы не болят. В этом случае не стоит принимать обезболивающие препараты, так как нужно побороть невралгическая симптомы и мышечная усталость пройдет сама по себе;
    ожирение – распространенная причина, вызывающая ощущение мышечной усталости.

    Дело в том, что тучная фигура и большая масса теля, является постоянной нагрузкой на физическое состояние организма. При ходьбе часто болят ноги, спина, шея, возникают ноющие боли в мышцах в этих областях. При таком заболевании миалгия сама по себе не проходит, так как на мышцы приходится постоянная нагрузка.

    Здесь два выхода – или худеть либо принимать фармацевтические препараты, которые смогут облегчить болевые ощущения в мышцах.

      Боли при беременности. Беременность – сильная физическая и моральная нагрузка на организм, и возникновение мышечного дискомфорта в этом положении нормальное явление для всех женщин, которые ждут ребенка.

    Категорически запрещено заниматься самолечением и принимать медикаментозные препараты без консультации врача.

    Ощущение мышечной усталости может быть самостоятельным явлением или симптомом серьезного заболевания.

    После нагрузок и чрезмерных напряжений возникает так называемая «крепатура» или синдром мышечной боли. При нормальных условиях она проходит за несколько дней без постороннего вмешательства. Если человек ощущает мышечную боль и слабость без особых причин – это повод для беспокойства и обращения к специалисту.

    Важно! Усталость мышц игнорировать нельзя, так как это может быть сигналом серьезного заболевания

    Медикаменты от мышечной усталости (www.ustalosty.net)

    Прежде, чем начать бороться с мышечной болью, важно понять причину ее возникновения.

    Если ощущение мышечной усталости возникло в результате перенапряжения мышц из-за физической нагрузки, можно использовать фармацевтические препараты наружного действия:

    • анестезирующие средства, такие как Меновазин или Новокаин;
    • согревающие или охлаждающие мази на основе лекарственных растений и продуктов животного происхождения – пчелиный яд, змеиный яд, хондроитин, норковый жир;
    • охлаждающие лекарственные препараты на основе мяты, камфоры или мелиссы.

    Если усталость мышц возникла в результате травмы или перелома, тогда лучше использовать медикаментозные препараты обезболивающего действия для приема внутрь.

    Перед приемом подобных средств лучше посоветоваться с доктором.

    Народные рецепты против мышечной усталости (okeydoc.ru)

    Кроме медицинских препаратов есть ряд народных рецептов, которые способны расслабить мышцы, устранить тяжесть в различных частях тела и привести в тонус мышечную массу.

    Примеры самых эффективных рецептов, помогающих при возникновении болей в разных частях тела, даже в сердечной мышце, описаны ниже.

      При частом утомлении мышц, связанных с лишним весом или постоянными физическими нагрузками можно использовать такое средство домашней медицины: на 3 чайных ложки сухих измельченных лавровых листьев нужна 1 ложка высушенного можжевельника. В полученную травяную смесь добавляется 6 чайных ложек жира растительного или животного происхождения. Кашицу необходимо размешать до получения однородной массы и обрабатывать на ночь пораженные места.

    Растения обладают расслабляющим и успокаивающим свойством, которое на несколько часов снимет боль и усталость в мышцах.
    Натуральный мед, смешанный в равной пропорции с измельченной черной редькой, прекрасно снимет мышечную усталость, если на больную конечность, шею или поясницу наложить компресс.

    Прекрасно помогает при усталости во время беременности, после тренировок или тяжелого физического труда.
    При хронической мышечной слабости прекрасно поможет следующее средство: 25 граммов высушенной коры барбариса необходимо залить стаканом спирта и настоять неделю в темном, прохладном месте.

    Употреблять готовый настой внутрь перед едой 3 раза в сутки по 30 капель средства.

    Важно! Перед применением каких-либо средств народной медицины важно убедиться в отсутствии противопоказаний и аллергической реакции

    Профилактика мышечной усталости (klinikanikonova.ru)

    Чтобы после небольших физических нагрузок не чувствовать усталость и слабость в мышцах, необходимо их постепенно укреплять.

    Для этого необходимо ежедневно выполнять небольшой комплекс упражнений. Также не стоит забывать о здоровом питании. Для того, чтобы мышцы были крепкими и здоровыми необходимо включить в рацион витамины, минералы, белок, железо. Обязательно в ежедневном меню должны быть молочные продукты, богаты кальцием, мясо и рыба, содержащие фосфор и белок. Свежие овощи, ягоды и фрукты – это стопроцентный источник полезных веществ не только для мышечной массы, но и для всего организма в целом.

    Хронические заболевания сердца и сосудов – одни из самых популярных причин к появлению усталости.

    В этом случае рекомендуются к приему специальные лекарственные препараты, которые укрепляют сердечную мышцу, разжижают кровь и улучшают ее циркуляцию.

    В завершении хочется отметить, что причин для мышечной усталости существует множество.

    Читайте также:  Щек побеление от утомления

    Усталость и слабость может появиться после физических нагрузок, в результате заболеваний или стрессов. При хронической мышечной слабости необходимо посетить врача, чтобы выявить истинную причину, от которой болят мышцы.

    Стоит отдельно отметить вредные привычки и их влияние на мускулатуру тела. При употреблении алкоголя или курении сужаются сосуды, что значительно ослабляет мышцы.

    При употреблении транквилизаторов или наркотических веществ, человек все время может чувствовать себя уставшим.

    Утомлением называется временное снижение или утрата работоспособности организма, органа или ткани, наступающее после нагрузок. Утомление является нормальным физиологическим процессом, который приводит к прекращению работы мышцы.
    При длительном ритмическом раздражении в мышце развивается утомление, проявляющееся постепенным уменьшением амплитуды сокращений данной мышцы, вплоть до полного прекращения ее сокращения, несмотря на продолжающееся раздражение.

    При утомлении увеличивается латентный период сокращений, удлиняется фаза расслабления мышцы, понижается возбудимость. Чем больше частота раздражений, тем быстрее наступает утомление. Причина утомления состоит в накоплении мышцей продуктов обмена веществ.

    В изолированной мышце снижение работоспособности при длительном раздражении действительно обусловлено тем, что во время ее сокращения накапливаются продукты обмена веществ — фосфорная кислота, связывающая ионы Са2+, молочная кислота и др. Они в значительной степени способствуют утомлению мышцы.

    Основными причинами утомления при выполнении длительных упражнений большой и умеренной мощности становятся факторы, связанные со снижением уровня энергообеспечения работающих мышц (исчерпание внутримышечных запасов гликогена, накопление продуктов неполного окисления жиров, избыточное накопление NН3 и ИМФ, развитие гипогликемического состояния), а также нарушение электрохимического сопряжения в работающих мышцах и ухудшение деятельности ЦНС в условиях выраженной гипертермии, дегидратации и сдвига электролитного баланса организма.

    Таким образом, при выполнении длительных упражнений большой и умеренной мощности причины, приводящие к возникновению утомления, носят комплексный характер. В организме мышца постоянно снабжается кровью, и поэтому она постоянно получает определенное количество питательных веществ, а также освобождается от продуктов распада, которые могли бы нарушить ее функцию.

    В большинстве случаев первичным звеном в развитии утомления при выполнении длительных упражнений большой и умеренной мощности являются изменения в объеме и характере внутримышечных энергетических субстратов.

    В широком диапазоне усилий при длительной работе (начиная от 25 % VO2 max и выше) значительная доля в ресинтезе АТФ приходится на окисление углеводов. Окисление жиров характерно только для упражнений, относительная мощность которых не превышает 50 % уровня VO2 max.

    Изменение концентрации глюкозы, жирных кислот и лактата в крови при выполнении длительных упражнений

    Анаэробные источники энергии (КрФ и гликоген) оказывают заметное влияние на энергетику работы только в тех видах длительных упражнений, относительная мощность которых превышает значения лактатного и креатинфосфатного порогов, локализованных на уровне 60-75 % VO2 max.

    В связи с изменяющимся характером энергетического обеспечения при длительной работе изменяется и динамика основных биохимических показателей крови (рис. 1). Содержание глюкозы в крови в процессе выполнения длительной работы заметно снижается в случае, когда длительность упражнения превышает 90 мин.

    Содержание молочной кислоты и свободных жирных кислот в крови сохраняется на уровне покоя до тех пор, пока не будет достигнуто значительное исчерпание углеводных ресурсов организма. С этого момента содержание этих метаболитов в крови проявляет тенденцию к повышению.

    Конкретные причины утомления при длительной работе могут быть обусловлены неспособностью работающих мышц поддерживать заданную скорость ресинтеза АТФ из-за снижения углеводных запасов, а также нарушениями в деятельности ЦНС из-за накопления аммиака и кетоновых тел в организме.

    Таким образом, при выполнении любого упражнения можно выделить ведущие, наиболее нагружаемые звенья обмена веществ и функции систем организма, возможности которых и определяют способность спортсмена выполнять упражнения на требуемом уровне интенсивности и продолжительности.

    Это могут быть регуляторные системы (ЦНС, вегетативная нервная, нейрогуморальная), системы вегетативного обеспечения (дыхание, кровообращение, кровь) и исполнительная (двигательная) система.

    Комплексный анализ проблемы утомления в спорте, проведенный физиологами, биохимиками, а также специалистами в области теории и методики спортивной тренировки (Я.М.

    Коц, Н.Н. Яковлев, В.Н. Волков, Н.И. Волков, В.Д. Моногаров, В.Н. Платонов и др.), убедительно показал, что утомление следует рассматривать как следствие выхода из строя какого-либо компонента в сложной системе органов и функций либо как нарушение взаимосвязи между ними. Ведущим звеном в развитии утомления может стать любой орган и его функция, если проявится несоответствие между уровнем физической нагрузки и имеющимися функциональными резервами.

    Поэтому первопричиной снижения работоспособности могут быть исчерпание энергетических резервов, тканевая гипоксия, снижение ферментативной активности под влиянием «рабочего» метаболизма тканей, нарушение целостности функциональных структур из-за недостаточности их пластического обеспечения, изменение гомеостаза, нарушение нервной и гормональной регуляции и др.

    Выяснение механизмов утомления играет важную роль в практике спорта для обоснования узловых положений спортивной тренировки.

    В частности, утомление расценивается как фактор, стимулирующий мобилизацию функциональных ресурсов, определяющий границы оптимального объема тренирующих воздействий и обеспечивающий эффективность протекания адаптации, успешность соревновательной деятельности и профилактику переадаптации.

    Научные достижения в области борьбы с утомлением мышц

    Исследователи из Колумбийского университета (Нью-Йорк) выяснили, что усталость мышц после продолжительной физической нагрузки вызвана избыточным проникновением кальция в мышечные клетки.

    Более того, им удалось найти средство, ликвидирующее «протечку», которое заметно повысило выносливость лабораторных мышей, сообщает журнал Proceedings of the National Academy of Sciences.

    Долгое время считалось, что утомление и болезненность мышц после физической нагрузки вызваны накоплением молочной кислоты. Однако в последние годы физиологи усомнились в данной теории. Чтобы пролить свет на этот вопрос, ученые под руководством Эндрю Маркса (Andrew Marks) изучали состояние мышц у мышей после трехнедельной физической нагрузки (ежедневное плавание в течение нескольких часов) и у спортсменов после трех дней интенсивной езды на велосипеде.

    Выяснилось, что утомление мышц после физической нагрузки сопровождалось изменением химической структуры так называемого рианодинового рецептора, играющего важную роль в сокращении мышц. Этот процесс вызывал появление небольшой «течи» в клеточной оболочке (мембране), благодаря которой кальций начинал непрерывно поступать внутрь мышечной клетки. В результате происходило заметное уменьшение силы мышц и, одновременно, активировался фермент, повреждающий мышечные волокна.

    Марксу и его коллегам также удалось найти средство, способное ликвидировать «течь», остановив поступление кальция, — препарат под названием S107.

    Мыши, получавшие это лекарство, дольше оставались энергичными и могли выдерживать большие физические нагрузки, сообщили исследователи. Предполагается, что S107 сможет блокировать чувство мышечной усталости и у людей.

    По мнению ученых, этот препарат может оказаться особенно актуальным для борьбы с хронической усталостью при сердечной недостаточности.

    Более ранние исследования показали, что выраженный упадок сил у пациентов с этим заболеванием — иногда они не в состоянии встать с постели или почистить зубы — также сопровождается «протечкой» кальция. Однако в отличие от спортсменов, у людей с сердечной недостаточностью этот процесс является необратимым.

    В ближайших планах ученых — протестировать препарат S107 на пациентах с сердечной недостаточностью. В случае если эксперименты окажутся успешными, препарат может поступить в продажу через несколько лет, считают специалисты.

    Утомление мышцы проявляется в том, что она перестает сокращаться несмотря на стимуляцию.

    Существует два механизма утомления:

    1) Периферическое – внутри мышц:

    • накапливается молочная кислота, среда закисляется, происходит денатурация белков;
    • заканчиваются запасы гликогена, а поступление глюкозы с кровью ограничено.

    2) Центральное утомление (нервно-психическое, играет ведущую роль в утомлении мышц) развивается в коре головного мозга, при этом прекращается поступление импульсов к мотонейронам спинного мозга.

    Для восстановления работоспособности какой-либо группы мышц после центрального утомления более благоприятен не полный покой, а интенсивная работа другой мышечной группы – «активный отдых».

    Физиолог Иван Михайлович Сеченов доказал, что правая рука отдыхает быстрее, если во время её отдыха работает левая рука.

    При динамической работе (когда происходят движения) утомление наступает медленнее, чем при статической (когда мышца постоянно сокращена и не совершает движений), из-за лучшего кровотока и активного отдыха.

    Одним из основных признаков утомления является снижение ра­ботоспособности, которая в процессе выполнения различных физи­ческих упражнений изменяется по разным причинам; поэтому и фи­зиологические механизмы развития утомления неодинаковы.

    Они обусловлены мощностью работы, ее длительностью, характером уп­ражнений, сложностью их выполнения и пр.

    При выполнении циклической работы максимальной мощности основной причиной снижения работоспособности и развития утом­ления является уменьшение подвижности основных нервных процес­сов в ЦНСс преобладанием торможения вследствие большого пото­ка эфферентной импульсации от нервных центров к мышцам и аф­ферентных импульсов от работающих мышц к центрам.

    Разрушает-сярабочая система взаимосвязанной активности корковых нейронов. Кроме того, в нейронах падает уровень содержания АТФ и креатин -фосфата, и в структурах мозга повышается содержание тормозного медиатора — гамма-аминомасляной кислоты. Существенное значе­ние в развитии утомления при этом имеет изменение функциональ­ного состояния самих мышц, снижение их возбудимости, лабильно­сти и скорости расслабления.

    При циклической/>а#0/яе субмаксимальной мощности ведущими причинами утомления являются угнетение деятельности нервных центров и изменения внутренней среды организма.

    Причина этого — большой недостаток кислорода, вследствие которого развивается ги-поксемия, снижается рН крови, в 20-25 раз увеличивается содержа­ние молочной кислоты в крови.

    Кислородный долг достигает макси­мальных величин — 20-22 л. Недоокисленные продукты обмена ве­ществ, всасываясь в кровь, ухудшают деятельность нервных клеток. Напряженная деятельность нервных центров осуществляется на фоне кислородной недостаточности, что и приводит к быстрому раз­витию утомления.

    Циклическая работа большой мощности приводит к развитию утомления вследствие дискоординации моторных и вегетативных функций. На протяжении нескольких десятков минут должна под­держиваться весьма напряженная работа сердечно-сосудистой и ды­хательной систем для обеспечения интенсивно работающего орга­низма необходимым количеством кислорода.

    При этой работе кис­лородный запрос несколько превышает потребление кислорода и кислородный долг достигает 12-15 л. Суммарный расход энергии при такой работе очень велик, при этом расходуется до 200 г глюко­зы, что приводит к некоторому ее снижению в крови. Происходит также уменьшение в крови гормонов некоторых желез внутренней секреции (гипофиза, надпочечников).

    Длительность выполнения циклической работы умеренной мощно­сти приводит к развитию охранительного торможения в ЦНС, ис­тощению энергоресурсов, напряжению функций кислородтранс-портной системы, желез внутренней системы и изменению обмена веществ.

    В организме снижаются запасы гликогена, что ведет к уменьшению содержания глюкозы в крови. Значительная потеря организмом воды и солей, изменение их количественного соотно­шения, нарушение терморегуляции также ведут к понижению ра­ботоспособности и возникновению утомления у спортсменов. В ме­ханизме развития утомления при длительной физической работе могут играть определенную роль изменения белкового обмена и снижение функций желез внутренней секреции.

    При этом в крови снижается концентрация глюко— и минералкортикоидов, катехо-ламинов и гормонов щитовидной железы. Вследствие этих измене­ний, а также в результате длительного влияния монотонных аффе­рентных раздражений в нервных центрах возникает торможение.

    Угнетение деятельности этих центров приводит к снижению эф­фективности регуляции движений и нарушению их координации. При длительном выполнении работы в разных климатических ус­ловиях развитие утомления, кроме того, может быть ускорено нару­шением терморегуляции.

    При различных видах ациклических движений механизмы раз­вития утомления также неодинаковы. В частности, при выполне­нии ситуационных упражнений, при разных формах работы пере­менной мощностибольшие нагрузки испытывают высшие отделы головного мозга и сенсорные системы, так как спортсменам необхо­димо постоянно анализировать изменяющуюся ситуацию, про­граммировать свои действия и осуществлять переключение темпа и структуры движений, что и приводит к развитию утомления.

    В некоторых видах спорта (например, футбол) существенная роль принадлежит недостаточности кислородного обеспечения и раз­витию кислородного долга.

    При выполнении гимнастических уп­ражнений и в единоборствах, утомление развивается вследствие ухудшения пропускной способности мозга и снижения функциональ­ного состояния мышц (уменьшается их сила и возбудимость, сни­жается скорость сокращения и расслабления). При статической /ш&мие основными причинами утомления являются непрерывное напряжение нервных центров и мышц, выключение деятельности менее устойчивых мышечных волокон и большой поток афферен­тных и эфферентных импульсов между мышцами и моторными центрами.

    Дата добавления: 2015-11-05; просмотров: 139 | Нарушение авторских прав

    Утомление — это временное снижение или потеря работоспособности, т. е. результат предшествовавшей работы. Утомление мышцы в организме в условиях кровообращения зависит не только от величины произведенной ею длительной работы, а от числа поступающих к ней волн возбуждения, вызывающих ее сокращение.

    При той же частоте раздражения и других равных условиях утомление появляется раньше при большей нагрузке мышцы. При той же нагрузке и других равных условиях утомление наступает раньше при более частых раздражениях. В начале работы высота сокращений увеличивается, а затем признаками развивающегося утомления являются постепенное уменьшение высоты сокращений, увеличение их продолжительности и нарастание контрактуры.

    Развитие утомления зависит от изменения обмена веществ, кровообращения, температуры и других условий. Чем выше обмен веществ и лучше кровообращение, тем позднее наступает утомление. Оно наступает значительно раньше, когда мышца сокращается, растягиваясь грузом при изометрическом сокращении, и позднее в том случае, когда она сокращается без груза, а следовательно, без напряжения.

    Если довести мышцу до полного утомления раздражением электрическим током, то после перемены направления тока ее работоспособность сразу восстанавливается.

    Это восстановление объясняется изменением состояния белков мышцы и сдвигами ионов на полюсах тока. Изолированная мышца уменьшает свою работу или даже перестает сокращаться, когда запас гликогена составляет половину исходного количества. Эти факты не подтверждают теорию истощения (Шифф, 1868), которая объясняет утомление мышцы израсходованием веществ, освобождающих энергию для ее работы. Однако запасы гликогена в организме человека ограничены и составляют 300-400 г. При очень интенсивной работе они потребляются за 1,5-2 ч, что приводит к такому снижению содержания сахара в крови, при котором работа становится невозможной.

    Введение сахара в организм восстанавливает его работоспособность.

    Теория отравления мышцы при утомлении накапливающимся в ней особым ядом — кенотоксином (Вейхардт, 1904) оказалась необоснованной. Но есть доказательства того, что утомление иногда связано с отравлением возбуждающихся структур продуктами обмена веществ, главным образом фосфорной и молочной кислотами в момент их образования.

    Остаточные продукты обмена веществ как бы засоряют организм и вызывают утомление — теория засорения (Пфлюгер, 1872).

    Накопление фосфорной и молочной кислот уменьшает работоспособность мышцы.

    Изолированное мышечное волокно в отличие от целой мышцы утомляется значительно позднее при одном и том же числе раздражающих импульсов. Это объясняется тем, что конечные продукты обмена веществ быстрее удаляются из него. В тренированной мышце вследствие большого ускорения анализа и синтеза веществ, обеспечивающих ее работу, утомление наступает позднее. После промывания кровеносных сосудов изолированной мышцы, доведенной до полного утомления, следовательно, после удаления из нее части остаточных продуктов обмена веществ она вновь начинает сокращаться несмотря на то, что не восстановился запас углеводов и кислорода.

    Эти факты доказывают, что остаточные продукты распада веществ, образующиеся в работающей мышце, — одна из причин ее утомления.

    Существует также теории удушения (М. Ферворн, 1903), приписывающая главную роль в утомлении недостатку кислорода.

    Известно, что работа может продолжаться десятки минут и даже часы без утомления, когда .уровень потребления кислорода ниже предела его поступления, возможного для работающего (истинное устойчивое состояние). Когда потребление кислорода достигает максимума, оно может находиться на постоянном уровне, но не обеспечивает потребность организма в кислороде (кажущееся, или .южное, устойчивое состояние) и работа в этом случае может продолжаться не больше 10-40 мин.

    Утомление является нормальным физиологическим процессом, который приводит к прекращению работы.

    Во время перерывов в работе восстанавливается работоспособность мышц. Поэтому обоснованность участия мелочной и фосфорной кислот в наступлении утомления не позволяет сделать нелепый вывод о том, то труд вреден, так как он, якобы, ведет к отравлению.

    Нельзя ставить знак равенства между утомлением изолированной мышцы и утомлением всего организма, в котором наступление утомления зависит от изменения функций нервной системы и желез внутренней секреции и от изменения регуляции центральной нервной системой обмена веществ, кровообращения и дыхания.

    Развитие утомления зависит от снижения работоспособности системы кровообращения, в особенности сердца, и дыхательной системы.

    В нормальных условиях при длительной физической работе возбуждение и сокращение мышцы — два взаимосвязанных процесса, которые происходят при потреблении кислорода, так как они осуществляются благодаря очень сложным химическим процессам, завершающимся окислением остаточных продуктов обмена веществ.

    Работоспособность мышц после утомления восстанавливается в результате окисления этих продуктов. Поэтому потребление кислорода при мышечной работе значительно увеличивается. Если кислорода поступает недостаточно, то при интенсивной мышечной работе наступает недостаток кислорода — кислородный долг.

    В условиях недостаточности кислорода во время работы функции нервной системы понижаются, что является основной причиной утомления. Кислородный долг погашается благодаря усиленному кровообращению и дыханию не только во время работы, но и после ее окончания.

    Это погашение кислородного долга заканчивается только после полного окисления остаточных продуктов обмена веществ, образовавшихся во время работы, и полного окончания восстановительных процессов.

    В нервно-мышечном препарате утомление развивается в области мионеврального соединения.

    Основная теория утомления, приписывающая главную роль его развитию в центральной нервной системе целого организма, сформулирована И, М, Сеченовым (1902).

    Имеются многочисленные доказательства ведущей роли центральной нервной системы в развитии утомления. Утомлена наступает при действии условных раздражителей. При утомлении усиливается торможение условных и безусловных рефлексов. На развитие утомления влияют приток афферентных импульсе; в головной мозг, эмоции. Сознательная, произвольная мышечная деятельность утомляет больше, чем непроизвольная, автоматическая.

    Существенное значение для наступления утомления имеет функциональное состояние головного мозга, которое изменяет: при гипоксемии, гипогликемии, гипертермии, накоплении метаболитов в крови, сдвигах функций внутренних органов, особенно сердечнососудистой и дыхательной систем.

    источник

  • Понравилась статья? Поделить с друзьями: