Оксигемоглобин в венозной и артериальной крови в венозную

В этой части речь идет о переносе газов кровью: о значении физических факторов для переноса газов кровью, о роли давления газов в их переносе кровью, о кислородной емкости крови, о содержании газов в крови, о связывании кислорода кровью, о связывании углекислого газа кровью.

Растворение газов в жидкостях зависит от ряда факторов: от свойств самого газа, от свойств жидкости (концентрации в ней солей, ее температуры), от объема и давления газа над жидкостью.

Показателем растворимости газов служит коэффициент растворимости (или абсорбционный коэффициент). Его величина показывает тот объем газа, который растворяется в 1 см 3 жидкости при температуре 0 градусов Цельсия и давлении 760 мм рт.ст.

Коэффициент растворимости газа тем больше, чем ниже температура; он уменьшается с повышением температуры и при температуре кипения равен нулю (газ из раствора весь испаряется). Коэффициент растворимости в крови для кислорода равен 0,022, для азота — 0,011, для углекислоты — 0,511.

В состоянии растворения в артериальной крови содержится 0,25 мл О2, 2,69 мл СО2 и 1,04 мл N.

Физическое растворение газов очень мало, а поэтому оно не имеет большого значения для их переноса кровью. Важным фактором переноса газов кровью является образование химических соединений с веществами плазмы крови и эритроцитов. Для установления химических связей и физического растворения газов важна величина давления газа над жидкостью.

Поступление газа в жидкость зависит от его давления. Если над жидкостью находится смесь газов, то движение и растворение каждого из них зависят от его парциального давления. Парциальное давление можно рассчитать исходя из общего давления смеси газов и их процентного содержания.

Всю газовую смесь атмосферного воздуха принимают за 100%, он обладает давлением 760 мм рт.ст., а часть газа (О2 — 20,95%) принимают за X. Отсюда: X=(760х20,95):100=159,22 мм рт.ст. При расчете парциального давления газов в альвеолярном воздухе необходимо учитывать, что он насыщен водяными парами, давление которых составляет 47 мм рт.ст. Следовательно, на долю газовой смеси, входящей в состав альвеолярного воздуха приходится давления не 760 мм рт.ст., а 760-47=713 мм рт.ст. Это давление принимается за 100%.

Отсюда легко вычислить, что парциальное давление О2, который содержится в альвеолярном воздухе в количестве 14,3%, будет равно: (713х14,3):100=102 мм рт.ст.

Соответственный расчет парциального давления СО2 показывает, что оно равно 40 мм рт.ст.

Альвеолярный воздух контактирует с тонкими стенками легочных капилляров, по которым приходит к легким венозная кровь. Интенсивность обмена газов и направление их движения (из легких в кровь или из крови в легкие) зависят от парциального давления кислорода и углекислоты в газовой смеси в легких и в крови (давление газов в жидкостях называют их напряжением).

Напряжение кислорода в венозной крови равно 40 мм рт.ст., углекислоты — 46 мм рт.ст. Движение газов осуществляется от большего давления к меньшему. Следовательно. кислород будет поступать из легких (его парциальное давление в них равно 102 мм рт.ст.) в кровь (его напряжение в крови 400 мм рт.ст.) в альвеолярный воздух (давление 40 мм рт.ст.)

В крови кислород соединяется с гемоглобином и образует непрочное соединение — оксигемоглобин. Насыщение крови кислородом зависит от количества гемоглобина в крови. Максимальное количество кислорода, которое может поглотить 100 мл крови, называют кислородной емкостью крови. Известно, что в 100 г крови человека содержится 14% гемоглобина. Каждый грамм гемоглобина может связать 1,34 мл О2. Значит, 100 мл крови могут перенести 1,34х14%=19 мл (или 19 объемных процентов). Это и есть кислородная емкость крови.

Можно рассчитать степень насыщения крови кислородом. Для этого нужно разделить содержание кислорода исследуемой крови на ее кислородную емкость.

В артериальной крови 0,25 объемного процента О2 находится в состоянии физического растворения в плазме, а остальные 18,75 объемного процента — в эритроцитах в связанном состоянии с гемоглобином в виде оксигемоглобина. Связь гемоглобина с кислородом зависит от величины напряжения газов: если оно увеличивается, гемоглобин присоединяет кислород и образуется оксигемоглобин (НВО2). При уменьшении напряжения кислорода оксигемоглобин распадается и отдает кислород. Кривую, отражающую зависимость насыщения гемоглобина кислородом от напряжения последнего, называют кривой диссоциации оксигемоглобина. Даже при небольшом парциальном давлении кислорода (40 мм рт.ст.) с ним связываются 75-80% гемоглобина. При давлении 80-90 мм рт.ст. гемоглобин почти полностью насыщается кислородом. В альвеолярном воздухе парциальное давление кислорода равно 120 мм рт.ст., поэтому кровь в легких будет полностью насыщена кислородом.

При рассмотрении кривой диссоциации оксигемоглобина можно заметить, что при уменьшении парциального давления кислорода оксигемоглобин подвергается диссоциации и отдает кислород. При нулевом давлении кислорода оксигемоглобин может отдать весь соединенный с ним кислород.

Свойство гемоглобина — легко насыщаться кислородом, даже при небольших давлениях, и легко его отдавать — очень важно.

Благодаря легкой отдаче гемоглобином кислорода при снижении парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела.

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина.

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, так же как не происходит полной отдачи кислорода при снижении его парциального давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови.

Особое значение в связывании гемоглобина с кислородом имеет содержание СО2 в крови. Чем больше содержится углекислоты в крови, тем меньше связывается гемоглобин с кислородом и тем быстрее происходит диссоциация оксигемоглобина. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении СО2, равном 46 мм рт.ст. в венозной крови. Влияние СО2 на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество СО2 и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же, по мере выделения СО2 из венозной крови в альвеолярный воздух. с уменьшением содержания СО2 в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

В артериальной крови содержится 50-52% СО2, а в венозной на 5-6% больше — 55-58%. из них 2,5-2,7 объемного процента в состоянии физического растворения, а остальная часть СО2 переносится в виде солей угольной кислоты: бикарбоната натрия (NaHCO3) в плазме и бикарбоната калия (KHCO3) — в эритроцитах. Часть углекислого газа (от 10 до 20 объемных процентов) может транспортироваться в виде соединений с аминогруппой гемоглобина — карбгемоглобина.

Из всего количества СО2 большая его часть (2/3) переносится плазмой крови.

Одной из важнейших реакций, обеспечивающих транспорт СО2, является образование угольной кислоты из СО2 и Н2О:

Такая реакция в крови ускоряется приблизительно в 20 000 раз. Большая скорость этой реакции обеспечивается ферментом карбоангидразой. При увеличении содержания СО2 в крови (что бывает в тканях) фермент способствует гидратации СО2 и реакция идет в сторону образования Н2СО3. При уменьшении парциального напряжения СО2 в крови (что имеет место в легких) фермент карбоангидраза способствует дегидратации Н2СО3 и реакция идет в сторону образования СО2 и Н2О. Это обеспечивает наиболее быструю отдачу СО2 в альвеолярный воздух.

Связывание СО2 кровью, так же как и кислорода, зависит от парциального давления. Можно построить кривые диссоциации углекислоты, отложив на оси абсцисс парциальное давление СО2, а на оси ординат — количество связанного углекислого газа в объемных процентах. Кривая показывает, что связывание СО2 кровью увеличивается по мере возрастания его парциального давления.

При парциальном напряжении СО2, равном 40 мм рт.ст. (что соответствует его напряжению в артериальной крови), в крови содержится 52% углекислоты. При напряжении СО2, равном 46 мм рт.ст. (что соответствует напряжению в венозной крови), содержание СО2 возрастает до 58%.

На связывание СО2 кровью влияет присутствие оксигемоглобина в крови. Эту зависимость можно проследить при переходе артериальной крови в венозную. Сравнение нижней кривой и верхней НА РИСУНКЕ

показывает, что при превращении артериальной крови в венозную солями гемоглобина отдается кислород и тем самым облегчается ее насыщение углекислым газом. При этом содержание СО2 в ней увеличивается на 6%: с 52% до 58%.

В сосудах легких образование оксигемоглобина способствует отдаче СО2, содержание которого при превращении венозной крови в артериальную уменьшается с 58 до 52 объемных процентов. В присутствии кислорода из крови удаляется весь СО2 при его нулевом напряжении в окружающей среде. В присутствии азота, даже при нулевом напряжении СО2 в окружающей среде, часть его остается связанным с кровью.

По материалам www.psyworld.ru

Чем кровь, которая течёт в венах, отличается от той, которая находится не в венах, а в теле?

Кровь «в теле», как вы выразились, — это кровь артериальная. Она принципально отличается от венозной по внешнему виду, месту обращения в человеческом организме и по составу.

В состав артериальной крови входит гемоглобин, окисленный частицами кислорода крови, который называется оксигемоглобин. Этот компонент придает артериальной крови ярко-красный и даже алый оттенок. Венозная кровь не содержит кислорода, она обогащена углекислым газом, из-за чего приобретает темно-красный, почти бордовый цвет. При этом венозная кровь теплее артериальной.

Лабораторные анализы позволяют отличить образцы артериальной крови от венозной по ее составу. В норме у человека с хорошим состоянием здоровья напряжение кислорода в артериальной крови составляет от 80 до 100 мм ртутного столба. В ней также содержатся и молекулы углекислого газа. Его показатели колеблются от 35 до 45 мм ртутного столба. В венозной крови соотношение кислорода и углекислого газа прямо противоположно. Так, напряжение кислорода в венозной крови составляет в норме около 38 — 42 мм ртутного столба, а углекислого газа — 50 — 55 мм ртутного столба. Помимо газов, в артериальной крови обнаруживается большое количество питательных веществ, в то время как в венозной крови преобладают продукты жизнедеятельности клеток, которые затем адсорбируются в печени и почках. Лабораторные тесты показывают, что ph артериальной крови равен 7,4, а венозной — 7,35.

Основной функцией артериальной крови является транспортирование частиц кислорода к органам и тканям человеческого организма по артериям большого круга кровообращения и венам малого круга кровообращения. Артериальная кровь проходит через все ткани организма, доставляя молекулы кислорода, необходимые для осуществления обмена веществ. Постепенно утрачивая частицы кислорода, она наполняется молекулами углекислого газа и превращается в венозный тип.

Венозная система осуществляет отток крови, обогащенной углекислым газом и продуктами обмена. Кроме того, в нее попадают гормоны, продуцируемые железами внутренней секреции, и питательные вещества, которые всасываются стенками органов пищеварения, т.е. большое количество конечных продуктов обмена веществ.

Артериальная кровь движется от сердца, а венозная — к сердцу. Циркуляция крови по венам значительно отличается от циркуляции крови по артериям. В норме, сокращаясь, сердце выбрасывает артериальную кровь под давлением 120 мм ртутного столба. Затем, проходя через капиллярную сеть, сила выброса постепенно снижается, а давление падает до 10 мм ртутного столба. Соответственно, венозная кровь движется гораздо медленнее артериальной. К тому же в венозной системе кровь движется, преодолевая силу тяжести и испытывая всю полноту гидростатического давления. Ввиду этого артериальное кровотечение легко отличить от венозного. При повреждении артерий кровь «бьет ключом», пульсирует, а венозная кровь стекает медленно.

По материалам www.domotvetov.ru

Эталон ответа. У больной имеет место гипоксия смешанного типа, включающая гемическую (вследствие снижения содержания гемоглобина из-за острой массивной кровопотери, связанной с разрывом маточной трубы) и циркуляторную (вследствие уменьшения объема циркулирующей крови из-за кровопотери). С целью уменьшения кислородной недостаточности включились срочные механизмы компенсации: тахикардия и гиперпноэ.

Задача 7. Больная Л., 28 лет поступила в терапевтическую клинику с жалобами на сильную головную боль, тошноту, одышку, сердцебиение и слабость. После сбора анамнеза выяснено, что жалобы появились через несколько часов после того, как больная закрыла печную трубу до полного прогорания угля. Объективно: частота дыхания 30 мин -1 , пульс 100 мин -1 , слабого наполнения. При анализе периферической крови обнаружено увеличение количества эритроцитов и ретикулоцитов в единице объема. Какой тип кислородного голодания развился у больной, и каков его патогенез?

Эталон ответа. У больной возникла кровяная гипоксия, обусловленная прочным связыванием гемоглобина угарным газом (окисью углерода). Срочные механизмы компенсации: тахикардия и тахипноэ.

Задача 8. Больной О., 40 лет, жалуется на приступы удушья в ночное время. Больной возбужден, отмечает чувство страха. Объективно: кожные покровы цианотичны, положение сидячее, вынужденное, в нижних отделах легких выслушиваются влажные хрипы, левая половина сердца смещена влево на 3,5 см от срединно-ключичной линии. Пульс 100 мин -1 , минутный объем сердца 3 л. Содержание оксигемоглобина в артериальной крови 87%, в венозной крови 40%. В крови: содержание эритроцитов – 5,9×10 12 /л, содержание гемоглобина 175 г/л. Какой тип кислородного голодания развился у больного, и каков его патогенез?

Эталон ответа. У больной имеет место гипоксия смешанного типа: сердечнососудистая (циркуляторная) и дыхательная. Общая причина – сердечная недостаточность. О циркуляторной гипоксии свидетельствует сниженный ОЦК (3л) как следствие недостаточности производительной (насосной) функции сердца и снижение содержания оксигемоглобина в венозной крови как следствие застоя крови в сосудах микроциркуляторного русла большого круга кровообращения. Застойные явления в малом круге кровообращения приводят к нарушению процесса оксигенации крови в легочных капиллярах и, следовательно, к снижению содержания оксигемоглобина в артериальной крови.

По материалам studfiles.net

Кислород транспортируется артериальной кровью в двух формах: связанный с гемоглобином внутри эритроцита и растворенный в плазме.

Эритроцит происходит из недифференцированной костномозговой ткани.

При созревании клетка утрачивает ядро, рибосомы и митохондрии. Вследствие этого эритроцит не способен к выполнению таких функций, как клеточное деление, окислительное фосфорилирование и синтез белка. Источником энергии для эритроцита служит преимущественно глюкоза, метаболизируемая в цикле Эмбдена-Миергофа, или гексозомонофосфатном шунте. Наиболее важным внутриклеточным белком для обеспечения транспорта О2 и СО2 является гемоглобин, представляющий собой комплексное соединение железа и порфирина. С одной молекулой гемоглобина связываются максимально четыре молекулы О2. Гемоглобин, полностью загруженный О2, называется оксигемоглобином, а гемоглобин без О2 или присоединивший менее четырех молекул О2 — деоксигенированным гемоглобином.

Основной формой транспорта О2 является оксигемоглобин. Каждый грамм гемоглобина может максимально связать 1,34 мл О2. Соответственно, кислородная емкость крови находится в прямой зависимости от содержания гемоглобина:

О2 емкость крови = [Hb]? 1,34 О2 /гHb/100 мл крови (3.21).

У здоровых людей с содержанием гемоглобина 150 г/л кислородная емкость крови составляет 201 мл О2 крови.

Кровь содержит незначительное количество кислорода, не связанного с гемоглобином, а растворенного в плазме. Согласно закону Генри, количество растворенного О2 пропорционально давлению О2 и коэффициенту его растворимости. Растворимость О2 в крови очень мала: только 0,0031 мл растворяется в 0,1 л крови на 1 мм рт. ст. Таким образом, при напряжении кислорода 100 мм рт. ст. в 100 мл крови содержится только 0,31 мл растворенного О2.

Содержание кислорода в крови (СаО2) — это сумма связанного с гемоглобином и растворенного в плазме О2:

СаО2 = [(1,34)[Hb](SaО2)] + [(Pa)(0,0031)] (3.22).

Кривая диссоциации гемоглобина. Сродство гемоглобина к кислороду возрастает по мере последовательного связывания молекул О2, что придает кривой диссоциации оксигемоглобина сигмовидную или S-образную форму (рис. 3.14).

Верхняя часть кривой (РаО2?60 мм рт.ст.) плоская. Это указывает на то, что SaО2 и, следовательно, СаО2, остаются относительно постоянными, несмотря на значительные колебания РаО2. Повышение СаО2 или транспорта О2 может быть достигнуто за счет увеличения содержания гемоглобина или растворения в плазме (гипербарическя оксигенация).

РаО2, при котором гемоглобин насыщен кислородом на 50% (при 370 рН=7,4), известно как Р50. Эта общепринятая мера сродства гемоглобина к кислороду. Р50 крови человека составляет 26,6 мм рт. ст. Однако оно может изменяться при различных метаболических и фармакологических условиях, воздействующих на процесс связывания кислорода гемоглобином. К ним относят следующие факторы: концентрацию ионов водорода, напряжение углекислого газа, температуру, концентрацию 2,3-дифосфоглицерата (2,3-ДФГ) и др.

Рис. 3.14. Сдвиги кривой диссоциации оксигемоглобина при изменениях рН, температуры тела и концентрации 2,3-дифосфоглицерата (2,3-ДФГ) в эритроцитах

Изменение сродства гемоглобина к кислороду, обусловленное колебаниями внутриклеточной концентрации водородных ионов, называется эффектом Бора. Снижение рН сдвигает кривую вправо, повышение рН — влево. Форма кривой диссоциации оксигемоглобина такова, что этот эффект более выражен в венозной крови, чем в артериальной. Данный феномен облегчает освобождение кислорода в тканях, практически не сказываясь на потреблении кислорода (в отсутствии тяжелой гипоксии).

Двуокись углерода оказывает двоякое действие на кривую диссоциации оксигемоглобина. С одной стороны, содержание СО2 влияет на внутриклеточный рН (эффект Бора). С другой, накопление СО2 вызывает образование карбаминовых соединений вследствие ее взаимодействия с аминогруппами гемоглобина. Эти карбаминовые соединения служат в качестве аллостерических эффекторов молекулы гемоглобина и непосредственно влияют на связывание О2. Низкий уровень карбаминовых соединений вызывает сдвиг кривой вправо и снижение сродства гемоглобина к О2, что сопровождается увеличение высвобождения О2 в тканях. По мере роста РаСО2 сопутствующее ему увеличение карбаминовых соединений сдвигает кривую влево, повышая связывание О2 гемоглобином.

Органические фосфаты, в частности 2,3-дифосфоглицерат (2,3-ДФГ), образуются в эритроцитах в процессе гликолиза. Продукция 2,3- ДФГ увеличивается во время гипоксемии, что является важным механизмом адаптации. Ряд условий, вызывающих снижение О2 в периферических тканях, таких как анемия, острая кровопотеря, застойная сердечная недостаточность и т.д. характеризуются увеличением продукции органических фосфатов в эритроцитах. При этом уменьшается сродство гемоглобина к О2 и повышается его высвобождение в тканях. И наоборот, при некоторых патологических состояниях, таких как септический шок и гипофосфатемия, наблюдается низкий уровень 2,3-ДФГ, что приводит к сдвигу кривой диссоциации оксигемоглобина влево.

Температура тела влияет на кривую диссоциации оксигемоглобина менее выражено и клинически значимо, чем описанные выше факторы. Гипертермия вызывает повышение Р50, т.е. сдвиг кривой вправо, что является благоприятной приспособительной реакцией не повышенный кислородный запрос клеток при лихорадочных состояниях. Гипотермия, напротив, снижает Р50, т.е. сдвигает кривую диссоциации влево.

СО, связываясь с гемоглобином (образуя карбоксигемоглобин), ухудшает оксигенацию периферических тканей посредством двух механизмов. Во-первых, СО непосредственно уменьшает кислородную емкость крови. Во-вторых, снижая количество гемоглобина, доступного для связывания О2; СО снижает Р50 и сдвигает кривую диссоциации оксигемоглобина влево.

Окисление части двухвалентного железа гемоглобина до трехвалентного приводит к образованию метгемоглобина. В норме у здоровых людей метгемоглобин составляет менее 3% общего гемоглобина. Низкий его уровень поддерживается внутриклеточными ферментными механизмами восстановления. Метгемоглобинемия может наблюдаться как следствие врожденной недостаточности этих восстановительных ферментов или образования аномальных молекул гемоглобина, резистентных к ферментативному восстановлению (например, гемоглобин М).

Доставка кислорода (DО2) представляет собой скорость транспорта кислорода артериальной кровью, которая зависит от кровотока и содержания О2 в артериальной крови.

Системная доставка кислорода (DО2), рассчитывается как:

DO2 = ([(Hb) ?1,34? % насыщения] + [0,0031?PaO2 )?Qt (мл/мин) = 20 мл О2/100 мл крови ? 5000 мл/мин = 1000 мл О2/мин (3.23).

Доставку и потребление кислорода часто рассчитывают с учётом площади поверхности тела. При сердечном индексе, составляющем 3 л/(мин*м-2) (Qt делённый на площадь поверхности тела) нормальное значение DО2 = 540 мл/(мин ? м2). Если обычный показатель сердечного выброса составляет от 2,5 до 3,5 л/мин/м2, то нормальная величина DО2 колеблется от 520 до 720 мл/мин/м2.

Существует тонкое сопряжение между артериальным содержанием О2, сердечным выбросом, тканевой утилизацией О2 и содержанием О2 в смешанной венозной крови. Некоторые заболевания, такие как РДСВ и сепсис, сопровождаются нарушением сопряжения между утилизацией О2 периферическими тканями и доставкой кислорода. Утилизация снижается, когда доставка падает ниже некоторого порога.

Отношение между этими переменными выражается правилом Фика, которое устанавливает, что потребление О2 (объем в 1 мин) является произведение минутного сердечного выброса и артерио-венозной разницы О2:

Потребление О2 = VO2 = Q ? (CaO2 — CvO2) (3.24).

В условия основного обмена взрослый человек потребляет около 250 мл О2 в минуту, с учетом площади поверхности тела — 110-160 мл/(мин*м2). Однако скорость утилизации О2 различными тканями неодинакова. Содержание кислорода в смешанной венозной крови представляет собой усредненную величину для венозной крови от всех органов — и низким, и с высоким уровнями экстракции О2.

Возросшая кислородная потребность при фиксированном минутном сердечном выбросе вызывает увеличение артерио-венозной разницы по О2. Кроме того, нормальный компенсаторный ответ на снижение кровотока проявляется также в виде увеличения поглощения кислорода, достаточного для поддержания VO2 на нормальном уровне. Иными словами, падение сердечного выброса компенсируется увеличением разницы SaO2 – SvO2, и VO2 остаётся неизменным. Следовательно, артериовенозную разницу можно рассматривать как меру адекватности доставки кислорода, а снижение SvO2 отражает увеличение экстракции кислорода.

При нормальном потреблении кислорода около 250 мл/мин и сердечном выбросе 5000 мл/мин нормальная артериовенозная разница, согласно этому уравнению, составит 5 мл О2/100 мл крови. При этом нормальный коэффициент экстракции О2 [(СаО2 — CvO2)/CaO2] составит 25 %, т. е. 5 мл/20 мл. Таким образом, в норме организм потребляет только 25 % кислорода, переносимого гемоглобином. Когда потребность в О2 превосходит возможность его доставки, то коэффициент экстракции становится выше 25 %. Наоборот, если доставка О2 превышает потребность, то коэффициент экстракции падает ниже 25 %.

Если доставка кислорода снижена умеренно, потребление кислорода не изменяется благодаря увеличению экстракции О2 (насыщение гемоглобина кислородом в смешанной венозной крови снижается). В этом случае VO2 не зависит от доставки. По мере дальнейшего снижения DO2 достигается критическая точка, в которой VO2 становится прямо пропорциональна DO2. Состояние, при котором потребление кислорода зависит от доставки, характеризуется прогрессирующим лактат-ацидозом, обусловленным клеточной гипоксией. Критический уровень DO2 наблюдается в различных клинических ситуациях. Например, его значение 300 мл/(мин*м2) отмечено после операций в условиях искусственного кровообращения и у больных с острой дыхательной недостаточностью.

Напряжение углекислого газа в смешанной венозной крови (PvCO2) в норме составляет примерно 46 мм рт. ст., что является конечным результатом смешивания крови, притекающей из тканей с различными уровнями метаболической активности. Венозное напряжение углекислого газа в венозной крови меньше в тканях с низкой метаболической активностью (например, в коже) и больше в органах с высокой метаболической активностью (например, в сердце).

Двуокись углерода легко диффундирует. Ее способность к диффузии в 20 раз превышает таковую у кислорода. СО2, по мере образования в процессе клеточного метаболизма, диффундирует в капилляры и транспортируется к легким в трех основных формах: в виде растворенной СО2, в виде аниона бикарбоната и в виде карбаминовых соединений.

СО2 очень хорошо растворяется в плазме. Количество растворенной фракции определяется произведением парциального давления СО2 и коэффициента растворимости (? =0,3 мл/л крови /мм рт. ст.). Около 5% общей двуокиси углерода в артериальной крови находится в форме растворенного газа.

Анион бикарбоната является преобладающей формой СО2 (около 90%) в артериальной крови. Бикарбонатный анион является продуктом реакции СО2 с водой с образованием Н2СО3 и ее диссоциации:

СО2 + Н2О ?Н2СО3?Н+ + НСО3- (3.25).

Реакция между СО2 и Н2О протекает медленно в плазме и очень быстро в эритроцитах, где присутствует внутриклеточный фермент карбонгидраза. Она облегчает реакцию между СО2 и Н2О с образованием Н2СО3. Вторая фаза уравнения протекает быстро без катализатора.

По мере накопления НСО3- внутри эритроцита анион диффундирует через клеточную мембрану в плазму. Мембрана эритроцита относительно непроницаема для Н+, как и вообще для катионов, поэтому ионы водорода остаются внутри клетки. Электрическая нейтральность клетки в процессе диффузии СО2 в плазму обеспечивает приток ионов хлора из плазмы в эритроцит, что формирует так называемый хлоридный сдвиг (сдвига Гамбургера). Часть Н+, остающихся в эритроцитах, забуферируется, соединясь с гемоглобином. В периферических тканях, где концентрация СО2 высока и значительные количества Н+ накапливаются эритроцитами, связывание Н+ облегчается деоксигенацией гемоглобина. Восстановленный гемоглобин лучше связывается с протонами, чем оксигенированный. Таким образом, деоксигенация артериальной крови в периферических тканях способствует связыванию Н+ посредством образования восстановленного гемоглобина.

СО2 + Н2О + HbО2 > HbH+ + HCO3+ О2 (3.26).

Это увеличение связывания СО2 с гемоглобином известно как эффект Холдейна. В легких процесс имеет противоположное направление. Оксигенация гемоглобина усиливает его кислотные свойства, и высвобождение ионов водорода смещает равновесие преимущественно в сторону образования СО2:

По материалам xn--80ahc0abogjs.com

Понравилась статья? Поделить с друзьями: