Мышечная ткань изображение клетки ткани

Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни — это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей — мышечных. Их мы и рассмотрим подробнее дальше.

В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции.

  1. Эпителиальная. Образует покровы органов, наружные стенки сосудов, выстилает слизистые оболочки, формирует серозные оболочки.
  2. Нервная. Образует все органы одноименной системы, обладает важнейшими особенностями — возбудимостью и проводимостью.
  3. Соединительная. Существует в разных проявлениях, в том числе в жидкой форме — крови. Формирует сухожилия, связки, жировые прослойки, заполняет кости.
  4. Мышечная ткань, строение и функции которой позволяют животным и человеку осуществлять самые разнообразные движения, а многим внутренним структурам — сокращаться и расширяться (сосудам и так далее).

Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ.

Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название — мышечная ткань. Строение и функции ее весьма своеобразны и интересны.

Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:

Каждая из них имеет свое место локализации в организме и выполняет строго определенные функции.

Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры.

Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками — актином и миозином. Именно они обеспечивают главное свойство этой структуры — сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин — темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления — пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, — меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру — определенный тип мышечной ткани.

Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие — в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации — восстановления целостности ткани.

Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:

  • сокращение;
  • возбудимость;
  • проводимость;
  • лабильность.

Благодаря большому количеству нервных волокон, кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью.

Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия (химического, механического, физического характера) — важное условие нормальной безопасной жизнедеятельности любого организма.

Мышечная ткань, строение и функции, которые она выполняет — все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное (контролируемое) или непроизвольное (без осознанного управления) уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл (актиновых и миозиновых нитей). Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру.

В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Ничего. Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения — все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани.

Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны — нервные клетки.

Строение мышечных тканей, обладание перечисленными свойствами, отличительные особенности — главные причины выполнения ими ряда важнейших функций в организмах животных и человека.

Одна из разновидностей мышечных. Имеет мезенхимное происхождение. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре.

Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, — в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками.

Гладкая мышечная ткань образована пучками миоцитов (веретенообразных клеток) описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма.

В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:

  • секреторные миоциты, или синтетические;
  • гладкие.

Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов.

Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества.

Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека (его сознания), то и места локализации будут соответствующие. Такие, как:

  • стенки кровеносных сосудов и вен;
  • большая часть внутренних органов;
  • кожа;
  • глазное яблоко и прочие структуры.

В связи с этим характер активности гладкой мышечной ткани — быстродействующий низкий.

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:

  • осуществление сокращения и расслабления органов;
  • сужение и расширение просвета кровеносных и лимфатических сосудов;
  • движение глаз в разных направлениях;
  • контроль над тонусом мочевого пузыря и других полых органов;
  • обеспечение реакции на действие гормонов и других химических веществ;
  • высокая пластичность и связь процессов возбуждения и сокращения.

Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы — все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное.

Рассмотренные выше типы мышечной ткани не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон — поперечно-полосатых.

Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами — нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани.

Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами «симпласт» или «синцитий». Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань — основа межклеточного вещества, которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям.

Миоциты рассматриваемой ткани, кроме значительного размера, имеют еще несколько особенностей:

  • саркоплазма клеток содержит большое количество хорошо различимых микрофиламентов и миофибрилл (актин и миозин в основе);
  • данные структуры объединяются в большие группы — мышечные волокна, которые, в свою очередь, формируют непосредственно скелетные мышцы разных групп;
  • имеется множество ядер, хорошо выраженный ретикулюм и аппарат Гольджи;
  • хорошо развиты многочисленные митохондрии;
  • иннервация осуществляется под контролем соматической нервной системы, то есть осознанно;
  • утомляемость волокон высокая, однако и работоспособность тоже;
  • лабильность выше среднего уровня, быстрое восстановление после рефракции.

В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина — специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой — сарколеммой.

В молодом возрасте животных и человека скелетные мышцы содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. В целом скелетная мускулатура занимает до 75% от общей массы. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений.

Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: обычных миоцитов и кардиомиоцитов. Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты — особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль — выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии.

Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры — в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии.

Вся скелетная мускулатура организма — это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже.

Поперечно-полосатая скелетная мышечная ткань Сердечная мышечная ткань
1. Опорно-двигательный аппарат Главный орган сердечно-сосудистой системы — сердце.
2. Мышцы гортани и пищевода
3. Глотка
4. Язык

Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных — способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей.

Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных.

  1. Отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.
  2. Поддерживает положение тела в пространстве.
  3. Выполняет функцию защиты органов брюшной полости (от механических воздействий).
  4. Сердечная мускулатура обеспечивает ритмические сокращения сердца.
  5. Скелетные мышцы участвуют в актах глотания, формируют голосовые связки.
  6. Регулируют движения языка.

Таким образом, можно сделать следующий вывод: мышечные ткани — важные структурные элементы любого животного организма, наделяющие его определенными уникальными способностями. Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит — волокно, образованное из белковых нитей актина и миозина.

источник

Животные ткани выполняют очень важную функцию в организмах живых существ — формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток — миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет гладкая мышечная ткань. Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие мышечные волокна. Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации — это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные — все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов — структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте — это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех типов клеток в рассматриваемой ткани остаются примерно одинаковыми.

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее вегетативная нервная система.

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок — исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный и редко встречаемый путь регенерации данной ткани.

Гладкая мышечная ткань функции свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Каково же значение этой структуры? Зачем нужна гладкая мышечная ткань? Функции ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.

источник

Мышечные ткани – это специализированные ткани, ос­новной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность мио­карда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных бел­ков.

Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характе­ризуется тем, что содержит миофибриллы, не имеющие по­перечной исчерченности; 2) поперечнополосатая (исчер­ченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделя­ется на скелетную и сердечную. Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, на­ходятся во внутренних органах и сосудах); 2) эпидермаль­ные (развиваются из кожной эктодермы, включают немы­шечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейраль­ные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) сома­тические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань); 5) целомические (развиваются из висцерального листка спланхнотома и образуют сердеч­ную мышечную ткань). Первые три типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым. К общим структурным признакам, характерным для мышечных тканей, следует отнести наличие: 1)специальных органелл – миофибрилл, благодаря взаимодействию их сократительных белков, осуществляется сокращение; 2)развитого трофиче­ского аппарата, обеспечивающего выполнение сократитель­ной функции – митохондрий, гладкой эндоплазматической сети, включений гликогена и миоглобина; 3)развитого опор­ного аппарата в виде двуслойной оболочки с окружающей ее сетью волокон соединительной ткани.

Гладкая мышечная ткань мезенхимного происхожде­ния располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий мио­цит. Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально располо­женным ядром (рис. 7-1). Цитолемма гладкого мио­цита обра­зует многочисленные впячивания – кавеолы (мел­кие пу­зырьки). Снаружи цитолемму покрывает тонкая ба­зальная мембрана. В базальной мембране каждого миоцита есть от­верстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.

Органеллы общего значения – комплекс Гольджи, мито­хондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохонд­рии. Саркоплазматическая сеть участвует в синтезе гликоза­миногликанов и белковых молекул, из которых осуществля­ется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примы­кают к кавеолам и вместе с ними служат для депонирования ионов кальция.

Специальные органеллы видны в виде нитей, ориенти­рованных преимущественно вдоль длинной оси клетки и не имеющих поперечной исчерченности. В цитоплазме миоци­тов стабильно выявляются только тонкие нити – миофила­менты, состоящие из белка актина. Они прикрепляются на внутренней стороне цитолеммы, образуя плотные тельца, состоящие из белка актинина. При изменении мембранного потенциала клетки ионы кальция, поступающие из депо, ак­тивируют сборку миозиновых (более толстых) нитей и их взаимодействие с актиновыми. По мере образования актин-миозиновых мостиков происходит смещение актиновых миофиламентов навстречу друг другу, тяга передается на цитолемму, и клетка укорачивается. При уменьшении содер­жания кальция миозин теряет сродство к актину. В резуль­тате начинается расслабление миоцита и разборка миозино­вых нитей. Сокращение медленное, тоническое.

Рис. 7-1. Гладко-мышечная клет-ка.

4. Зона щелевидных контактов.

Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и пара­симпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют про­ведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также мио­циты-пейсмекеры, которые сами генерируют потенциал дей­ствия и передают его соседним клеткам.

Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эн­домизий. Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием. В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпими­зием. При повышенной функциональной нагрузке гладкие миоциты гипертрофируются, как, например, в матке во время беременности, проявляя высокую способность к физиологи­ческой регенерации. При репаративной регенерации восста­новление возможно за счет деления малодифференцирован­ных миоцитов, которые находятся в составе мышечных ком­плексов, а также из адвентициальных клеток и миофиброб­ластов.

источник

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

источник

Мышечные волокна – вытянутые в длину образования цилиндрической формы, суживающиеся на концах, покрытые оболочкой – сарколеммой. Под сарколеммой в саркоплазме находятся многочисленные ядра вытянутой по оси волокна формы. Иногда ядра лежат попарно или цепочкой, что указывает на их способность к делению. Поперечно-полосатые мышечные волокна имеют продольную и поперечную исчерченность. Первая связана с наличием в саркоплазме миофибрилл, располагающихся вдоль мышечного волокна. Поперечная исчерченность связана с неоднородностью строения, различной физико-химической организацией и разными оптическими свойствами миофибрилл по их длине.

Миофибрилла состоит из чередующихся темных, способных к двойному лучепреломлению участков – анизотропных дисков и светлых, не обладающих этой способностью – изотропных дисков. Миофибриллы относятся к специальным органоидам и являются морфологическим субстратом основной специфической функции мышечной ткани – сократимости.

Рис. 63. Поперечнополосатая мышечная ткань

Задание. Рассмотреть микрофотографию (Рис. 63), зарисовать его и сделать все необходимые подписи к рисунку.

Структурные элементы гладкой мышечной ткани – мышечные клетки. В продольном сечении они веретенообразные, темноокрашенные (Рис. 59). Их палочковидные ядра вытянуты вдоль клеток. В поперечном сечении мышечные клетки имеют форму округлых ли многоугольных площадок различного диаметра.

Рис. 64. Гладкая мышечная ткань: 1 – толстый ядерный отдел клетки; 2 – заостренные концы клетко; 3 – ядра; 4 – прослойки базальной мембраны; 5 – прослойки ареолярной ткани; 6 – сосуды; 7 – нервы; 8, 9 , 10, 11 – поперечные сечения мышечных клеток; 12 – нервные клетки нервного сплетения

Заостренные концы одних мышечных клеток вклиниваются между расширенными участками других, формируя мышечный пласт, в котором клетка контактирует со значительным количеством соседних, объединяющихся в «эффектор» – моторную единицу.

Ядра мышечных клеток имеют вытянутую форму с глыбками хроматина и ядрышками. Форма и структура ядер позволяет узнать гладкую мышечную ткань, когда границы отдельных клеток определить не удается.

Гладкие мышечные клетки одеты обычной плазмалеммой и базальной мембраной, ограничивающей их от тончайших прослоек соединительной ткани.

Рис. 65. Гладкая мышечная ткань

Задание. Рассмотреть микрофотографию (Рис. 65), зарисовать его, сравнить с рисунком (Рис. 64) и сделать все необходимые подписи к нему.

Миоциты сердечной мускулатуры имеют структурные, цитологические и функциональные особенности (Рис. 66). Сердечные миоциты в продольном сечении почти прямоугольные. В центральной части клетки расположено ядро овальной формы, вытянутое по оси. В периферических отделах саркоплазмы находятся пучки миофибрилл, обуславливающих поперечную исчерченность.

Рис. 66. Сердечная мышечная ткань: 1- сердечные миоциты; 2 – ядро, 3 — вставочные диски; 4 – соединительная ткань; 5 – капилляры

Характерным морфологическим признаком сердечной мышцы являются специфически организованные контакты смежных миоцитов. Они выглядят темными полосками и называются вставочными дисками. Они образованы внутренними листками сарколеммы соседних миоциов.

Таким образом, с помощью вставочных дисков сердечные миоциты объединяются в мышечные комплексы, обеспечивающие сокращение миокарда как единого целого.

Рис. 67. Сердечная мышечная ткань

Задание. Рассмотреть микрофотографию (Рис. 67), зарисовать его, сравнить с рисунком (Рис. 66) и сделать все необходимые подписи к нему.

источник

Мышечная клетка, хотя и обладает основными компонентами, присущими всем клеткам человеческого тела, ее необходимо рассмотреть детальнее.

Сразу следует, что мышечная клетка отличается от других клеток нашего тела. Основные различия приведены ниже:

  1. Мышечная клетка имеет многоядерное строение, причем ядра расположены на периферии клетки.
    Ядра мышечных клеток не способны к делению, их функция сосредоточена в формировании информации для строения белковой молекулы.
    Мышечная клетка, в своей оболочке имеет клетки-сателлиты, которые, в отличие от ядер, обладают способностью к делению и служат для восстановления наших мышц (например, после микротравм, полученных в ходе интенсивных тренировок).
  2. Мышечная клетка наполнена сократительными структурами – миофибриллами. Это, своего рода, параллельно расположенные нити, общее количество которых в клетке может составлять порядка двух тысяч.
    Назначение миофибрилл – стягивание мышечного волокна под действием нервного импульса.
    Миофибрилла состоит из чередующихся поперечных полос темного и светлого цвета. Светлые участки способны уменьшать свою длину (до полного исчезновения) пропорционально силе сокращения миофибриллы, а при расслаблении мышцы – восстанавливают свою протяженность.
    Миофибрилла включает огромное количество нитей двух белков: миозина и актина, которые располагаются вдоль миофибриллы. Причем, миозин – толстые нити, а актин – тонкие нити. Этим и объясняется светло-темное полосатое строение миофибриллы (темные полосы – миозин, светлые полосы – актин).

Каждая наша мышца состоит из пучков мышечных волокон (симпласта), которые представляют собой совокупность мышечных клеток продолговатой цилиндрической формы, края этих клеток сужены. В поперечном разрезе мышечная клетка выглядит так:

Как правило, мышечные клетки очень длинные (до 14 см) и тонкие (около 50 мкм). Обычно их длина равна длине отдельной мышцы.

Мышечные клетки образуют пучки, из которых, собственно, и состоят наши мышцы.

Следует уяснить, что каждая мышечная клетка в таком пучке окружена соединительной тканью. В ней находятся лимфатические сосуды, кровеносные сосуды и нервные волокна.

Совокупность пучков мышечных клеток заключена в оболочке соединительной ткани. У основания мышцы, эта соединительная ткань образует сухожилия, посредством которых мышца крепится к кости.

Более наглядно данная структура показана на рисунке:

Таким образом, усилие, создаваемое нашими мышцами, через сухожилия передается костям скелета, в результате чего наши кости перемещаются относительно друг друга – осуществляется движения.

Но, что же заставляет наши мышцы сокращаться, как формируется это усилие и как передается в мышцу? На эти и другие вопросы Вы найдете ответы в статье Сокращение мышц. Принцип работы мышцы человека.

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

источник

Мышечные ткани. Двигательные процессы в организме человека и животного обусловлены сокращением мышечной ткани, обладающей сократительными структурами. К мышечной ткани относят неисчерченную (гладкую) и исчерченную (поперечнополосатую) мышечную ткань, включающую скелетную и сердечную.

Сократительными элементами являются мышечные фибриллы — миофибриллы (мышечные нити). Клетки мышечной ткани — миоциты. Мышечные ткани обладают возбудимостью и сократимостью.


Мышечная ткань (Стерки П., 1984). а — продольное сечение скелетной мышцы; б — сердечная исчерченная мышечная ткань; в — неисчерченная (гладкая) мышечная ткань; 1 — сарколемма; 2 — поперечная исчерченность; 3 — ядра; 4 — вставочные диски; 5 — гладкомышечные клетки [1988 Воробьева Е А Губарь А В Сафьянникова Е Б — Анатомия и физиология: Учебник]

Гладкая мышечная ткань — состоит из веретеновидных клеток с продольной исчерченностью.

Особенности: длительно сокращается; долго находится в сокращённом состоянии; сокращается непроизвольно.

Образует стенки сосудов и кишечника.


Гладкие мышечные волокна. 1 — протоплазма; 2 — ядро [1959 Станков А Г — Анатомия человека]

Поперечнополосатая скелетно-мышечная ткань — клетки цилиндрической формы с поперечнополосатой исчерченностью.

Особенности: сокращаются быстро; долго находятся в сокращённом состоянии; на сокращение тратится не много энергии; сокращается не произвольно, а по нашему желанию.

Образует скелетные мышцы, мышцы языка, глотку и части пищевода.

Поперечнополосатая сердечная мышечная ткань.

Особенности: похожа на поперечнополосатую скелетно-мышечную, но есть вставочные диски и анастомозы; сокращается произвольно, не зависимо от нашего сознания; есть атипичные клетки, которые образуют проводящую систему.


Поперечнополосатые мышечные волокна. Видны ядра и поперечная исчерченность. Левое волокно разорвано; в месите разрыва видна сарколемма [1967 Татаринов В Г — Анатомия и физиология]

источник

Данная тема интересна детям, учащимся седьмых классов, и взрослым, занимающимся биологией на любительском уровне. Для ее понимания надо освежить школьную информацию и на практике попробовать рассмотреть мышечную ткань под микроскопом . Микроскопирование гистологических препаратов проводится в проходящем освещении с задействованием нижнего галогенного или светодиодного осветителя. В настоящей статье мы выложим фотоснимки, которые наглядно покажут, что может увидеть наблюдатель в лабораторных или домашних условиях.

Мышечная ткань — это упругая и эластичная основа опорно-двигательного аппарата, обеспечивающая подвижность организма. Она образует мышцы, необходимые для выполнения простейших и сложных физических действий, команда на исполнение которых посылается нервным импульсом. Классификация определяет несколько разновидностей, объединенных одним общим свойством – способностью сокращаться.

  • Гладкая. Состоит из клеток, называемых миоцитами. Их отличительной особенностью является вытянутая форма, напоминающая веретено, и достаточно однородная внутренняя среда (цитоплазма). Включена в состав кровеносных сосудов и органов. Процесс сокращения и расслабления медленный. Движение не зависит от человеческой воли, то есть оно бессознательное.
  • Поперечно-полосатая скелетная. Представлена многоядерными миофибриллами нитевидной структуры. Может управляться произвольно, т.е. в зависимости от намерения человека. Организует мускулатуру костного скелета, воронкообразного канала глотки, языка, а также участвует в повороте глаз.
  • Поперечнополосатая сердечная, состоящая из кардиомиоцитов, цилиндрических клеток сердца. Они имеют характерные органеллы: ядро, лизосомы, митохондрии.

Для наблюдения мышечной ткани под микроскопом создается микропрепарат. На первом этапе взятый биологический материал, обернутый ватой, фиксируется путем долговременного замачивания в формалине — до 48 часов. Для этих целей может использоваться стеклянная посуда, например, банка с широким горлышком. Затем осуществляется заморозка, нарезка на куски малой ширины с использованием санного микротома, и окраска в гематоксилине и эозине. Подготовленные кусочки ткани кладутся на предметное стекло, пипеткой добавляется одна капля бесцветной пихтовой смолы, накрываются покровным стеклышком.

Для контрастирования в темном поле микроскоп должен быть оборудован темнопольным конденсором, но по умолчанию в учебных и медицинских моделях в базовой комплектации он отсутствует, и исследования проводятся в светлом. Визуализация может быть оптической или цифровой — через видеоокуляр. В этом случае изображение транслируется на экран ноутбука или персонального компьютера. Исследователь может зафиксировать результаты просмотра в фотографиях, на которых помимо образа объекта наносятся линейные и уголовные размеры участков, представляющих наибольший интерес.

Рекомендуются следующие характеристики прибора (не меньше):

  • Увеличение: 40-1000 крат;
  • Револьвер на 4 ахроматических или план-ахроматических объектива 4x, 10x, 40x, иммерсионный 100x;
  • Диаметр окулярной трубки не менее 23,2 мм.;
  • Широкопольный окуляр WF10 (или два парных, если насадка бинокулярная);
  • Наличие винта точной фокусировки с шагом 0,002 миллиметра.

Этим требованиям удовлетворяют, к примеру: Levenhuk 320, Микромед 1 вар. 1-20, Биомед 3.

источник

Понравилась статья? Поделить с друзьями: