Какие клетки имеют звездчатую форму

второе высшее образование «психология» в формате MBA

предмет: Анатомия и эволюция нервной системы человека.

Методичка «Анатомия центральной нервной системы»

4.1. Общие принципы строения нервной ткани
4.2. Нейроглия
4.3. Нейроны

4.1. Общие принципы строения нервной ткани

Нервная ткань, как и другие ткани человеческого организма, состоит из клеток и межклеточного вещества. Межклеточное вещество является производным глиальных клеток и состоит из волокон и аморфного вещества. Сами нервные клетки делятся на две популяции:
1) собственно нервные клетки — нейроны, обладающие способностью вырабатывать и передавать электрические импульсы;
2) вспомогательные глиальные клетки

Схема строения нервной ткани:

Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.

С одной стороны, нейрон — это генетическая единица, так как чшкает из одного нейробласта, с другой стороны, нейрон — это функциональная единица, так как обладает способностью возбуждаться и реагирует самостоятельно. Таким образом, нейрон — это структурно-функциональная единица нервной системы.

4.2. Нейроглия

Несмотря на то, что глиоциты не способны непосредственно, подобно нейронам, участвовать в переработке информации, их функция чрезвычайно важна для обеспечения нормальной жизнедеятельности мозга. На один нейрон приходится примерно десять глиальных клеток. Нейроглия неоднородна, в ней выделяют микроглию и макроглию, причем последняя еще разделяется на несколько типов клеток, каждый из которых выполняет свои, специфические функции.
Разновидности глиальных клеток:

Микроглия. Представляет собой мелкие, продолговатой формы клетки, с большим количеством сильноветвящихся отростков. У них очень мало цитоплазмы, рибосом, слабо развитая эндоплазматическая сеть и имеются мелкие митохондрии. Микроглиальные клетки являются фагоцитами и играют значительную роль в иммунитете ЦНС. Они могут фагоцитировать (пожирать) болезнетворные микроорганизмы, попавшие в нервную ткань, поврежденные или погибшие нейроны или ненужные клеточные структуры. Их активность возрастает при различных патологических процессах, протекающих в нервной ткани. Например, их количество резко увеличивается после радиационного поражения мозга. В этом случае вокруг поврежденных нейронов собирается до двух десятков фагоцитов, которые утилизируют погибшую клетку.

Астроциты. Это клетки звездчатой формы. На поверхности астроцитов имеются образования — мембраны, которые увеличивают площадь поверхности. Эта поверхность граничит с межклеточным пространством серого вещества. Часто астроциты располагаются между нервными клетками и кровеносными сосудами мозга:

Нейроглиальные взаимоотношения (по Ф. Блум, А. Лейэерсон и Л. Хофстедтер, 1988):

Функции астроцитов различны:
1) создание пространственной сети, опоры для нейронов, своего рода «клеточного скелета»;
2) изоляция нервных волокон и нервных окончаний как друг от друга, гак и от других клеточных элементов. Скапливаясь на поверхности ЦНС и на границах серого и белого вещества, астроциты изолируют отделы друг от друга;
3)участие в формировании гематоэнцефалического барьера (барьера между кровью и тканью мозга) — обеспечивается поступление питательных веществ из крови к нейронам;
4) участие в регенерационных процессах в ЦНС;
5) участие в метаболизме нервной ткани — поддерживается активность нейронов и синапсов.

Олигодендроциты. Это мелкие овальные клетки с тонкими, короткими, маловетвящимися, немногочисленными отростками (откуда они и получили свое название). Находятся в сером и белом веществе вокруг нейронов, входят в состав оболочек и в состав нервных окончаний. Их основные функции — трофическая (участие в обмене веществ нейронов с окружающей тканью) и изолирующая (образование миелиновой оболочки вокруг нервов, что необходимо для лучшего проведения сигналов). Вариантом олигодендроцитов в периферической нервной системе являются шванновские клетки. Чаще всего они имеют округлую, продолговатую форму. В телах мало органелл, а в отростках мномитохондрий и эндоплазматической сети. Существует два основных варианта шванновских клеток. В первом случае одна глиальная клетка многократно обматывается вокруг осевого цилиндра аксона, формируя так называемое «мякотное» волокно:
Олигодендроциты (по Ф. Блум, А. Лейзерсон и Л. Хофстедтер, 1988):

Такие волокна называются «миелинизированными» из-за миелина — жироподобного вещества, образующего мембрану шванновской клетки. Так как миелин имеет белый цвет, то скопления аксонов, покрытых миелином, образует «белое вещество» мозга. Между отдельными глиальными клетками, покрывающими аксон, имеются узкие промежутки — перехваты Ранвье, но имени ученого, их открывшего. В связи с тем, что электрические импульсы движутся по мислинизированному волокну скачкообразно от одного перехвата к другому, такие волокна обладают очень высокой скоростью проведения нервных импульсов.

Во втором варианте в одну шванновскую клетку погружается сразу несколько осевых цилиндров, образуя нервное волокно кабельного типа. Такое нервное волокно будет иметь серый цвет, и оно характерно для вегетативной нервной системы, обслуживающей внутренние органы. Скорость проведения сигналов в нем на 1 -2 порядка ниже, чем в миелинизированном волокне.

Эпендимоциты. Эти клетки выстилают желудочки мозга, секретируя спинномозговую жидкость. Они участвуют в обмене ликвора и растворенных в нем веществ. На поверхности клеток, обращенных в спинномозговой канал, имеются реснички, которые своим мерцанием способствуют движению цереброспинальной жидкости.

Таким образом, нейроглия выполняет следующие функции:
1) формирование «скелета» для нейронов;
2) обеспечение защиты нейронов (механическая и фагоцитирующая);
3) обеспечение питания нейронов;
4) участие в образовании миелиновой оболочки;
5) участие в регенерации (восстановлении) элементов нервной ткани.

Ранее отмечалось, что нейрон — это высокоспециализированная клетка нервной системы. Как правило, он имеет звездчатую форму, благодаря чему в нем различают тело (сому) и отростки (аксон и дендриты). Аксон у нейрона всегда один, хотя он может ветвиться, образуя два и более нервных окончания, а дендритов может быть достаточно много. По форме тела можно выделить звездчатые, шаровидные, веретенообразные, пирамидные, грушевидные и т. д. Некоторые разновидности нейронов, отличаются по форме тела:

Классификация нейронов по форме тела:
1 — звездчатые нейроны (мотонейроны спинного мозга);
2 — шаровидные нейроны (чувствительные нейроны спинномозговых узлов);
3 — пирамидные клетки (кора больших полушарий);
4 — грушевидные клетки (клетки Пуркинье мозжечка);
5 — веретенообразные клетки (кора больших полушарий)

Другой, более распространенной классификацией нейронов является их разделение на группы по числу и строению отростков. В зависимости от их количества нейроны делятся на униполярные (один отросток), биполярные (два отростка) и мультиполярные (много отростков):

Классификация нейронов по количеству отростков:
1 — биполярные нейроны;
2 — псевдоуниполярные нейроны;
3 — мультилолярные нейроны

Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза. Вместо них в организме человека имеются так называемые псевдоуниполярные клетки, у которых единственный аксон разделяется на две ветви сразу же после выхода из тела клетки. Биполярные нейроны имеют один дендрит и один аксон. Они имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны (имеющие большое количество дендритов) составляют большинство клеток нервной системы.

Размеры нейронов колеблются от 5 до 120 мкм и составляют в среднем 10-30 мкм. Самыми большими нервными клетками человеческого тела являются мотонейроиы спинного мозга и гигантские пирамиды Беца коры больших полушарий. И те и другие клетки являются по своей природе двигательными, и их величина обусловлена необходимостью принять на себя огромное количество аксонов от других нейронов. Подсчитано, что на некоторых мотонейронах спинного мозга имеется до 10 тысяч синапсов.

Третья классификация нейронов — по выполняемым функциям. Согласно этой классификации, все нервные клетки можно разделить на чувствительные, вставочные и двигательные :

Рефлекторные дуги спинного мозга:
а — двухнейронная рефлекторная дуга; б — трехнейронная рефлекторная дуга;
1 — чувствительный нейрон; 2 — вставочный нейрон; 3 — двигательный нейрон;
4 — задний (чувствительный) корешок; 5 — передний (двигательный) корешок; 6 — задние рога; 7 — передние рога

Так как «двигательные» клетки могут посылать приказы не только мышцам, но и железам, то нередко к их аксонам применяют термин эфферентный, т. е. направляющий импульсы от центра к периферии. Тогда чувствительные клетки будут называться афферентными (по которым нервные импульсы движутся от периферии к центру).

Таким образом, все классификации нейронов можно свести к трем, наиболее часто применяемым:

источник

В 1876 году Карл Фон Купфер описал клетки, названные им «Sternzellen» (звёздчатые клетки). При окрашивании оксидом золота, в цитоплазме клеток были заметны включения. Ошибочно сочтя их фрагментами эритроцитов, захваченных путем фагоцитоза, Купфер в 1898 году пересмотрел свои взгляды о «звёздчатой клетке» как об отдельном типе клеток и отнес их в разряд фагоцитов. Однако в последующие годы регулярно появлялись описания клеток, похожих на Купферовские «звёздчатые клетки». Им присваивались различные названия: интерстициальные клетки, парасинусоидные клетки, липоциты, перициты. Роль этих клеток оставалась загадкой на протяжении 75 лет, пока профессор Тосио Ито (Toshio Ito) не обнаружил в перисинусоидальном пространстве печени человека некие клетки, содержащие вкрапления жира. Ито назвал их «shibo-sesshu saibo» — жиропоглощающие клетки. Поняв, что вкрапления были жиром, выработанным клетками из гликогена, он сменил название на «shibo-chozo saibo» — жирозапасающие клетки. [6] В 1971 Кендзиро Вакэ (Kenjiro Wake) доказал идентичность «Sternzellen» Купфера и жирозапасающих клеток Ито. Вакэ также установил, что эти клетки выполняют важную роль складирования витамина А (до этого считалось, что витамин А откладывается в клетках Купфера [7] [8] ). Вскоре после этого, Кент и Поппер продемонстрировали тесную связь клеток Ито с фиброзом печени. Эти открытия положили начало процессу детального изучения клеток Ито.

  • Янг-О Куеон, Закари Д.Гудмэн, Жуль Л. Диенстаг, Юджин Р.Шифф, Натаниель А.Браун, Элмар Буркхардт, Роберт Скунховен, Дэвид А.Бреннер, Майкл У.Фрайд (2001) Снижение фиброгенеза: иммуногистохимическое исследование парной биопсии клеток печени после проведения терапии ламивудином у пациентов с хроническим гепатитом B. Journal of Haepothology 35; 749—755. — перевод статьи в журнале «Инфекции и антимикробная терапия», Том 04/N 3/2002, на сайте Consilium-Medicum.
  • Popper H: Distribution of vitamin A in tissue as revealed by fluorescence microscopy. Physiol Rev 1944, 24:205-224.
  1. Geerts A. (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 21(3):311-35. PM >(англ.) на сайте Medscape.
  2. Kobold D, Grundmann A, Piscaglia F, Eisenbach C, Neubauer K, Steffgen J, Ramadori G, Knittel T. (2002) Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J Hepatol. 36(5):607-13. PM >(англ.)
  3. Suematsu M, Aiso S. (2001) Professor Toshio Ito: a clairvoyant in pericyte biology. Keio J Med. 50(2):66-71. PM >(англ.)
  4. Querner F: Der mikroskopische Nachweis von Vitamin A im animalen Gewebe. Zur Kenntnis der paraplasmatischen Leberzellen-einschlüsse. Dritte Mitteilung. Klin Wschr 1935, 14:1213-1217.

Читайте также:  Клиника акушерства и гинекологии им сеченова

Wikimedia Foundation . 2010 .

Звездчатые клетки печени — Вверху схематическое изображение клетки Ито (HSC) по соседству с ближайшими гепатоцитами (PC), ниже синусоидальных эпителиальных клеток печени (EC). S синусоид печени; KC клетка Купфера. Внизу слева клетки Ито в культуре под световым микроскопом … Википедия

НЕРВНЫЕ КЛЕТКИ — НЕРВНЫЕ КЛЕТКИ, основные элементы нервной ткани. Открыты Н. к. Эренбер гом (Ehrenberg) и впервые им описаны в 1833 году. Более подробные данные о Н. к. с указанием на их форму и на существование осевоцилиндрического отростка, а также на… … Большая медицинская энциклопедия

Пуркине клетки — крупные нейроны коры мозжечка (См. Мозжечок) (М), аксоны которых выходят за её пределы; описаны в 1837 Я. Э. Пуркине. Через П. к. реализуются командные воздействия коры М на подчинённые ей моторные центры (ядра М и вестибулярные ядра). У… … Большая советская энциклопедия

Черви звездчатые — или Gephyrei класс подтипа червеобразных или Verm >Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Нервные клетки — Не следует путать с нейтроном. Пирамидальные ячейки нейронов в коре головного мозга мыши Нейрон (нервная клетка) – это структурно функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре… … Википедия

Хроматофоры, пигментные клетки — название это применяется как к некоторым пигментным клеткам, так и к частям клеток (как животных, так и растительных), содержащих пигмент. Чаще X. встречаются у растений (см. предыдущую статью Н. Гайдукова), но они описываются также у простейших … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ПЛАМЕННЫЕ КЛЕТКИ — (cellulae flammeae), клетки с пучком ресничек и длинным отростком, замыкающие проксимальную часть канальца протонефридия. Центр, часть «П. к., имеющая многочисл. звездчатые отростки, переходит в полость, в к рую спускается пучок длинных ресничек… … Биологический энциклопедический словарь

КУПФЕРА КЛЕТКИ — звездчатые эндотелиоциты (reticuloendoteliocyti stellatum), клетки ретикуло эндотелиальной системы, расположенные на внутр. поверхности капилляроподобных сосудов (синусоидов) печени у земноводных, пресмыкающихся, птиц и млекопитающих. Изучены К.… … Биологический энциклопедический словарь

«Пламенные» клетки — ПЛÁМЕННЫЕ КЛÉТКИ (cellulae flammeae), клетки с пучком ресничек и длинным отростком, замыкающие проксимальную часть канальца протонефридия. Центр. часть П. к., имеющая многочисл. звездчатые отростки, переходит в полость, в к рую спускается пучок… … Биологический энциклопедический словарь

Гольджи клетки — (С. Golgi) звездчатые нейроны зернистого слоя коры мозжечка … Большой медицинский словарь

источник

Наш организм составляют клетки около 200 различных специализаций, и все они, независимо от типа, выполняют одну функцию – поддерживают на протяжении определённого времени свою трудоспособность, обеспечивая жизнедеятельность организма.

Клетки имеют разнообразную форму, они могут быть очень мелкими, и увидеть их можно лишь в микроскоп.

Впервые клетку рассмотрел в обычный ветовой микроскоп английский натуралист Роберт Гук в $XVІІ$ столетии. С помощью современных электронных микроскопов можно рассмотреть не только размеры и форму клеток, но и их внутреннюю структуру.

Каждая клетка имеет характерные форму, размер, длительность жизни, которые зависят от её функциональных свойств.

Нервные клетки имеют аксоны, передающие нервные сигналы. Лейкоциты благодаря гибкой мембране уплощаются, проходя сквозь тонкие поры в капиллярах. Сперматозоиды, имеющие хвост, способны самостоятельно двигаться по гениталиях. Мышечные клетки соответственно силе сокращений изменяют свою длину.

Попробуй обратиться за помощью к преподавателям

Клетки имеют разнообразную форму и размеры в зависимости от функции, которую выполняют:

  • овальную, округлые (яйцеклетки),
  • дискообразную (эритроциты),
  • яйцевидную,
  • спиральную,
  • призматическую,
  • веретеновидную (мышечные),
  • цилиндрическую и кубические (эпителиальные ткани)
  • звёздчатую (нервные)
  • палочкообразную т.п.

Эритроциты (клетки крови) по форме напоминают вогнутый с двух сторон диск, а нейроны (нервные клетки) имеют один длинный (до 1 м) отросток и несколько коротких. Жировые клетки округлой формы, а мышечные имеют форму волокон.

Все клетки за формой делятся на паренхимные и прозенхимные.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Паренхимные клетки имеют одинаковые размеры во всех направлениях в пространстве: длина их не превышает толщину более чем в 3 раза. Их размеры варьируют от 10 до 500 мкм и более.

Прозенхимные – клетки удлинённые. Длина их превышает толщину более чем в 3 раза. Часто эти клетки имеют заострённые концы, толстые, преимущественно одревеснелые оболочки. Из них в основном формируются проводящие и механические ткани растений. Длина их варьирует приблизительно от 1 до 100 мм.

Клетки делят на два типа: прокариотические (не имеют оформленного ядра) и эукариотические (ядерные). Клетки эукариот в свою очередь делят на подтипы: клетки простейших и клетки многоклеточных.

Клетки тканей растений и животных отличаются размером, формой, особенностями организации, функциями.

От формы клеток зависят и выполняемые ими функции.

Функция эритроцитов – транспорт кислорода в организме, нервных клеток – проведение сигналов от органов к мозгу и соответствующих команд от мозга к органам. Длинные мышечные клетки могут сокращаться и расслабляться, благодаря чему осуществляются движения тела. В жировых клетках содержится запас питательных веществ. Кроме того, большинство клеток способны образовывать белки из аминокислот. Эти белки необходимы для нормальной жизнедеятельности организма.

Биологической наукой доведено, что организмы всех растений и животных происходят от клетки и имеют клеточное строение.

Клетка как элементарная биологическая система является основной структурно-функциональной единицей всех живых организмов за исключением вирусов, которые являются неклеточными формами жизни.

Именно на уровне клетки проявляются все основные признаки жизни: обмен энергии и веществ, способность к размножению, сохранению и передаче наследственной информации потомкам и т.п.

Одни клетки способны существовать как самостоятельные элементарные биологические системы. Это касается одноклеточных организмов – простейших (жгутиковые, инфузории, споровики). Большинство простейших обитают в водоёмах, участвуя в их самоочищении и являясь достаточно хорошей кормовой базой для рыб. Другие же клетки составляют многоклеточные организмы, в которых обеспечивают взаимодействие между клетками, тканями и органами с участием регуляторных механизмов, в частности нейрогуморальной регуляции.

Все клеточные формы жизни разделяют на основании строения составляющих их клеток делят на два подцарства – прокариоты (безъядерные) и эукариоты (ядерные). Клетки прокариот имеют более простое строение – предположительно, что в процессе эволюции они возникли раньше. Более сложные по строению эукариотические клетки возникли позже.

Несмотря на разнообразие форм организация клеток всех живых организмов подлежит единым структурным принципам. На основании микроскопических исследований доказано, что основными структурными компонентами клеток явдляется клеточная оболочка, цитоплазма и ядро.

Клетка – универсальная структурная и функциональная единица живых организмов, имеющая асе признаки живого, способная к саморегуляции, самовоспроизведению и развитию.

Термин «клетка» предложил английский учёный Р. Гук (1665).

Организм некоторых водорослей состоит из одной клетки, а гигантских секвой – из миллиардов клеток.

У растений, в зависимости от возраста, клетки могут быть живыми или мёртвыми. По размеру они, как правило, микроскопически мелкие, а клетки запасной паренхимы некоторых растений можно увидеть невооружённым глазом.

Все органы живых организмов состоят из клеток. Значит, они имеют клеточное строение, а каждая клетка – это микроскопически малая составляющая часть организма.

Клетки прилегают друг к другу и соединены особенным межклеточным веществом, которое содержится между оболочками соседних клеток. Если всё междуклеточное вещество разрушается, клетки разъединяются.

Такое бывает в мякоти рассыпчатого яблока, спелых арбузов и помидор. Варёный картофель становится рассыпчатым потому, сто межклеточное вещество во время варки разрушается и клетки разъединяются.

Часто живые клетки всех органов растений во время роста немного закругляются. При этом их оболочки местами отходят друг от друга: в этих участках межклеточное вещество разрушается. Образуются междуклеточники, заполненные воздухом. Сеть междуклеточников соединяется с воздухом, окружающим растение, через особенные междуклеточники на поверхности органов.

В организме взрослого человека насчитывается около 200 видов клеток, которые отличаются по размеру, форме, особенностям организации, функциям.

Размер и масса клеток разнообразны.

Размеры клеток варьируют от 0,1 – 0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе); диаметр большинства эукариотических клеток лежит в пределах 10 – 100 мкм.

Рамеры клеток организма человека колеблются от 3-4 мкм (некоторые клетки лейкоцитов) до 150 см (нервная клетка вместе с отростками).

Чаще встречаются клетки размером 10-100 мкм, реже – 1-10 мкм (клетки мякоти арбуза, цитрусовых, железистые клетки некоторых моллюсков) и очень редко – до 10-20 см (гигантские яйцеклетки птиц – гусей, гаг, пингвинов, страусов).

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

Какие клетки имеют звездчатую форму? а) железистые б) стрекательные в) пищеварительно-мускульные г) нервные

ночной образ жизни животных является формой поведения, которое характеризуется активностью животного в течение ночи и сном или бездеятельностью в течение дня. ночные животные ведут полностью противоположный образ жизни дневным животным. ночные существа, как правило, имеют высоко развитые чувства слуха, обоняния, и специально адаптированное для темноты зрение. эти особенности могут животным, таким как бабочки американская кукурузная совка (helicoverpa zea) успешно избегать хищников. одни животные, к примеру, кошки и хорьки, имеют глаза, которые способны приспосабливаться как к низкому уровню освещенности, так и к яркому дневному свету. другие, такие как галаговые и некоторые летучие мыши, могут функционировать только в ночное время суток. многие ночные животные, включая долгопятовых и некоторые виды сов, большими глазами по сравнению с их размером тела, чтобы компенсировать низкий уровень света в ночное время. большие роговицы относительно размера глаз у этих животных, позволяют увеличить их визуальную чувствительность в условиях низкой освещенности. ночной образ жизни животных осам, такие как apoica flavissima, избегать поиска пищи при нтенсивном солнечном свете. дневные животные, в том числе белки и певчие птицы, активны днем. сумеречные виды, такие как кролики, скунсы, кошки, тигры, и гиены, которых часто ошибочно называют ночными животными. виды животных, ведущие смешанный образ жизни, такие как фоссы и львы, активны как днем, так и ночью. в то время как большинство людей являются дневными, но по различным личным и социальным/культурным причинам некоторые люди временно или постоянно ведут ночной образ жизни. наиболее известные ночные существа, включают некоторые виды из семейства кошачьих, грызунов и сов, которые хорошо развитыми органами чувств (в том числе ночным зрением). происхождение хотя трудно сказать, какие животные были первыми, ночные или дневные, тем не менее существует ведущая гипотеза в сообществе эволюционной биологии, известная как «бутылочное горлышко». она постулирует, что миллионы лет назад в мезозойскую эру многие предки современных млекопитающих развили ночные особенности, чтобы избежать контакта с многочисленными суточными хищниками. большинство групп позвоночных имеют строение глаз, которое предсказуемо совпадает со временем их активности. ночные позвоночные, как правило, имеют большие роговицы относительно размера глаз в качестве адаптации для повышения зрительной чувствительности в темноте.

Читайте также:  Баю бай капли для грудничков инструкция

источник

1. Ткани внутренней среды состоят из:

Е) клеток и межклеточного вещества.

2. Содержит в составе форменные элементы.

3. Содержит в составе межклеточное вещество, состоящее из волокон и основного вещества.

4. В составе форменных элементов преобладают лимфоциты.

5. Выполняет транспортную, защитную, гомеостатическую, дыхательную, трофическую функции.

6. К форменным элементам крови относятся:

В) эритроциты, лейкоциты, кровяные пластинки,

7. Следующие форменные элементы крови не являются клетками:

D) кровяные пластинки.

8. В мазке крови большое количество эритроцитов имеют неправильную форму. Это явление называется:

С) пойкилоцитоз,

9.В норме у здорового человека количество эритроцитов составляет:

9. A) 3,9х10 12 — 5,5х10 12 в 1 л,

10. В препарате мазка крови человека, окрашенного по методу Романовского-Гимзы, содержатся безъядерные клетки, имеющие форму двояковогнутого диска и оксифильную цитоплазму:

С) эритроциты,

11. Кровяные пластинки — это:

С) безъядерные тельца округлой, овальной или веретеновидной формы размером 2 -3 мкм. В них различают основу -гиаломер и грануломер -гранулы, окруженные мембраной, образующие скопления в центре тельца или разбросанные по гиаломеру. В цитоплазме содержится значительное количество микротрубочек, митохондрий, гранулы гликогена.

12. Виды кровяных пластинок: Юные.

Морфологическая характеристика при окрашивании по методу-Романовского-Гимзы:

В) Базофильный гиаломер и единичные азурофильные гранулы,

13. Виды кровяных пластинок: Зрелые.

Морфологическая характеристика при окрашивании по методу Романовского-Гимзы:

С) Слабооксифильный гиаломер и выраженная азурофильная зернистость,

14. В норме у здорового человека количество кровяных пластинок составляет:

Е) 200х10 9 — 300х10 9 в 1 л.

С) Крупная клетка с бобовидным или подковообразным ядром и базофильной цитоплазмой, содержащей лизосомы, фагоцитарные вакуоли, множество пиноцитозных пузырьков, гранулярную цитоплазматическую сеть, митохондрии.

16. С) Клетка с сегментированным ядром (3 и более сегмента) с оксифильной цитоплазмой, в которой имеется мелкая зернистость, окрашивающаяся кислым и основным красителем. В электронном микроскопе в цитоплазме определяются органеллы общего назначения и 2 типа гранул.

A) Мелкая клетка с круглым ядром и узким ободком базофильной цитоплазмы, в которой содержится гранулярная эндоплазматическая сеть, пластинчатый комплекс.

В) Клетка с сегментированным ядром, состоящим чаще из 2-х сегментов и цитоплазмой с оксифильной зернистостью. В электронном микроскопе в составе гранул определяется кристаллоидная структура с высокой электронной плотностью, погруженная в аморфный тонкозернистый матрикс,

19.Эритроцит.

С) Мелкая безъядерная клетка с оксифильной цитоплазмой. В электронном микроскопе цитоплазма однородна, содержит включения в виде мелкой зернистости.

20. В препарате мазка крови человека, окрашенного по методу Романовского-Гимзы, содержатся клетки размером 6 -7 мкм, с круглым ядром и узким ободком базофильной цитоплазмы, ядерно-цитоплазматическим отношением равным 3:1:

В) лимфоциты,

21. Определите агранулоцит, имеющий размеры 6 — 7 мкм, круглое компактное ядро, малое количество базофильной цитоплазмы, в которой хорошо развиты гранулярная эндоплазматическая сеть и комплекс Гольджи.

С) В -лимфоцит,

С) Участвуют в метаболизме гистамина.

В) Являются эффекторными клетками клеточного иммунитета,

24.Т-лимфоциты-хелперы,

A) Стимулируют антигензависимую дифференцировку В-лимфоцитов,

D) Подавляют способность лимфоцитов участвовать в выработке антител.

Е) Трансформируются в плазматические клетки, продуцирующие антитела.

27. В гемограмме представлены следующие цифровые данные: 7% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови они принадлежат:

H) Моноцитам.

28. В гемограмме представлены следующие цифровые данные: ЗООх10 9 в 1 л.

Укажите, каким видам форменных элементов крови они принадлежат:

В) Кровяным пластинкам,

29. В гемограмме представлены следующие цифровые данные:

24% от общего количества лейкоцитов.

Укажите, каким видам форменных элементов крови они принадлежат:

C) Лимфоцитам,

30. В гемограмме представлены следующие цифровые данные:

30. 2% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови они принадлежат:

E) Эозинофилам

31. В гемограмме представлены следующие цифровые данные: 4.5х10 12 в 1 л. Укажите, каким видам форменных элементов крови, они принадлежат:

A) Эритроцитам,

32. В гемограмме представлены следующие цифровые данные: 200х 10 9 в 1 л. Укажите, каким видам форменных элементов крови, они принадлежат:

В) Кровяным пластинкам,

33. В гемограмме представлены следующие цифровые данные: 4% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови, они принадлежат:

Е) Эозинофилам,

34.В гемограмме представлены следующие цифровые данные: 60% от обшего количества лейкоцитов. Укажите, каким видам форменных элементов крови, они принадлежат: *В) Нейтрофилам,

35. В гемограмме представлены следующие цифровые данные: 9% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови, они принадлежат:

С) Моноцитам

36. В гемограмме представлены следующие цифровые данные: 0,5% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови они принадлежат:

Е) Базофилам.

37. В гемограмме представлены следующие цифровые данные: 26% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови они принадлежат:

E) Лимфоцитам.

38. В гемограмме представлены следующие цифровые данные: 70% от общего количества лейкоцитов. Укажите, каким видам форменных элементов крови они принадлежат:

В) Нейтрофилам

39. В гемограмме представлены следующие цифровые данные: 5х10 12 в 1 л. Укажите, каким видам форменных элементов крови они принадлежат:

A>Эритроцитам

40. Форменные элементы крови: Эритроциты. ФУНКЦИИ:

D) Обеспечивают газообмен, поддерживают ионное равновесие, обусловливают грппу крови, принимают участие в формировании красного тромба, транспор- тируют аминокислоты, токсины, лекарственные вещества.

41. Форменные элементы крови: Нейтрофилы. ФУНКЦИИ:

источник

Понятие о клетке. Живое существо в целом представляет собой сложный организм. Он построен из различных частей, или органов. Если особым способом приготовленный срез тканей какого-либо участка тела посмотреть под микроскопом, то можно увидеть, что он состоит из разнообразных частиц. Такая мельчайшая частица называется клеткой.

Таким образом, клеткой принято называть самую маленькую оформленную частицу сложного организма, в которой происходят все жизненные процессы.

Величина большинства клеток колеблется от 4 до 150 м (м. — микрон, одна тысячная часть миллиметра).

Форма клеток может быть плоская, кубическая, цилиндрическая, призматическая, звездчатая, веретенообразная и др.

Клетки состоят из протоплазмы и ядра (рис. 1). Только у красных кровяных клеток (эритроцитов) нет ядра.

Протоплазма представляет собой густую бесцветную студневидную массу, состоящую из белков, жиров, углеводов, витаминов и минеральных солей. Строение протоплазмы неодинаковое у различных клеток, и, кроме того, оно меняется в течение всей жизни клетки.

Ядро расположено в середине протоплазмы и имеет чаще всего округлую или овальную форму. Оно состоит из ядерной оболочки, ядерной сети, ядерного сока и одного или нескольких ядрышек.

К числу жизненных проявлений в клетках относят: обмен веществ, раздражение, движение и размножение.

Обмен веществ. С обменом веществ неразрывно связаны основные проявления жизни. Процесс обмена веществ протекает в клетках беспрерывно, и поэтому в течение всей жизни обновляется состав клеток, так как часть их веществ распадается, а часть создается заново. Процесс распада называется диссимиляцией, а процесс восстановления, создания живых частей клетки — ассимиляцией. Эти два прямо противоположных процесса в клетках совершаются одновременно.

При распаде белков, жиров и углеводов освобождается большое количество энергии, которая может превращаться в тепловую, химическую и механическую энергии, необходимые для жизнедеятельности клеток.

Конечными продуктами обмена веществ являются: углекислый газ, вода, аммиак, мочевина, мочевая кислота и др. Они относятся от клеток межклеточной жидкостью в кровь. Эти продукты обмена из крови удаляются почками и легкими.

При ассимиляции происходит восстановление живых частей клетки за счет усвоения питательных веществ из окружающей клетку жидкой межклеточной среды, куда они приносятся с кровью.

Раздражение. Способность клетки воспринимать раздражение является вторым (после обмена веществ) отличительным признаком живой клетки. Вызывается раздражение теми изменениями, которые происходят в окружающей клетку среде. Раздражителями клетки являются тепловые, химические, механические, световые и другие факторы. Способность клетки отвечать на раздражения называется возбудимостью.

Движение. Это проявление жизни в клетках совершается внутри протоплазмы. Одним из видов движения протоплазмы является сокращение мышечных клеток. Белые кровяные клетки и мужские половые клетки обладают способностью к самостоятельному движению.

Размножение. Клетки размножаются прямым и непрямым делением. При прямом делении протоплазма и ядро перешнуровываются и образуется вместо одной материнской две дочерние клетки. При непрямом делении происходят очень сложные изменения в протоплазме и ядре, в результате которых из одной материнской клетки получаются две дочерние клетки.

Считают, что при непрямом делении более равномерно в дочерних клетках распределяется наследственный материал. Наследственные свойства присущи всем клеткам тела домашних животных.

Клетки, служащие для размножения животных, называются половыми. Женские половые клетки называются яйцеклетками, а мужские — с п е р м и я м и. Яйцеклетка большой величины (100-150 i) и неподвижна, а спермин малой величины и обладают подвижностью. При оплодотворении женская и мужская половые клетки сливаются, образуя зиготу. Зигота, или зародышевая клетка, делится на 2, 4, 8,16, 32, 64 и т. д. клеток, которые называются б л а с т о м е р а м и. Бластомеры располагаются тесно друг около друга шарообразной фигурой. На одном полюсе этого шара из бластомеров возникает зародышевый узелок, из которого в дальнейшем и развивается зародыш (рис. 2).

В зародышевом узелке клетки располагаются в два слоя. Поверхностный слой называется наружным зародышевым л и с т к о м, глубокий слой — внутренним зародышевым листком. Между ними вскоре образуется средний зародышевой листок. Из этих трех зародышевых листков и формируются при дальнейшем развитии зародыша основные типы тканей тела животных.

Понятие о тканях. Тканью называется группа клеток, однородных по строению, функции и происхождению. Различают четыре основные ткани: эпителиальную, соединительную, мускульную и нервную.

Эпителиальная ткань. Эпителиальная ткань образует наружный слой кожи, выстилает изнутри органы пищеварения, дыхания, мочеотделения и размножения. Развивается эпителиальная ткань из всех трех зародышевых листков. Эту ткань часто называют просто э п и т е л и е м.

Характерным в строении эпителиальной ткани является наличие большого числа клеток, которые очень плотно прилегают друг к другу (рис. 3). Межклеточные пространства очень малой величины. По функции эпителиальная ткань делится на покровную и железистую.

Покровный эпителий называется еще и защитным, так как он защищает организм от высыхания и повреждений.

Читайте также:  Механизм денатурирующего действия температуры солей тяжелых металлов

Клетки железистого эпителия выделяют определенный секрет (слизь, слюну, желудочный сок, желчь, кишечный сок и т. д.). Из железистого эпителия состоят все железы.

По форме эпителиальные клетки бывают плоскими, кубическими, цилиндрическими. Они могут располагаться в один и в несколько слоев (однослойный и многослойный эпителий).

Соединительная ткань. Соединительная ткань характеризуется наличием в промежутках между клетками большого количества межклеточного вещества и волокон (клейдающие, эластические и ретикулиновые). Клетки соединительной ткани способны захватывать инородные тела, краски и многих болезнетворных микробов. Соединительная ткань развивается за счет среднего зародышевого листка. Из соединительной ткани построены скелет, связки,

сухожилия, хрящи, которые поддерживают и скрепляют все другие ткани. Кроме механической функции, соединительная ткань участвует в обмене веществ и питании других тканей. Она же несет в организме и защитную функцию, освобождая организм от попавших в него болезнетворных микробов. Соединительная ткань имеет много разновидностей. К ней относятся: эндотелий сосудов, сетчатая, рыхлая, жировая, плотная, эластическая, хрящевая, костная, соединительные ткани, а также кровь и лимфа.

Эндотелий является сильно специализированной соединительной тканью. Он состоит из плоских клеток, выстилающих внутреннюю поверхность кровеносных и лимфатических сосудсв.

Сетчатая, или ретикулярная, соединительпая ткань построена из звездчатых многоотростчатых клеток, которые своими отростками соединяются друг с другом и образуют сеть. В петлях сети располагаются белые кровяные тельца — лимфоциты, которые способны захватывать и уничтожать микробов. Кроме того, в межклеточном веществе встречаются ретикулиновые волокна. Эта ткань находится в лимфатических узлах, селезенке и костном мозге.

Рыхлая соединительная ткань встречается в подкожной клетчатке и в промежутках между мышцами и другими органами. Клетки ее имеют звездчатую форму с крыловидными отростками, но могут быть и округлые клетки. Межклеточного вещества много, и в нем находятся клейдающие и эластические волокна (рис. 4).

Клейдающие волокна состоят из тонких нитей. При варке органов и тканей эти нити образуют клей. При действии на них кислот и щелочей они набухают. При натяжении они не растягиваются.

Эластические волокна при натяжении растягиваются, как резина, а при варке не дают клея и под действием кислот и щелочей не изменяются. От волокон и зависит скрепляющая роль рыхлой соединительной ткани.

Жировая ткань устроена так же. как и рыхлая соединительная, но только клетки ее накопили в себе жир. Их называют жировыми клетками. Ткань, в которой очень много жировых клеток, называется жировой тканью. Она встречается в подкожной клетчатке, капсуле почек, сальниках, брыжейке и между мышцами.

Плотная соединительная ткань встречается как оформленная в сухожилиях и связках и как неоформленная — в основе кожи, в фиброзных оболочках. Клейдающие волокна оформленной ткани идут в одном определенном направлении (вдоль сухожилия или связки), а клейдающие волокна неоформленной соединительной ткани располагаются в различных направлениях. Соединительнотканные клетки оказываются сдавленными и имеют на себе отпечатки от волокон.

Эластическая соединительная ткань устроена так же, как и плотная, но только состоит из эластических волокон, например выйная связка.

Хрящевая ткань представлена гиалиновым, эластическим и волокнистым хрящом (рис. 5). Клетки хрящевой ткани не имеют отростков и заключены в особые капсулы по одной, две или три клетки в одной капсуле.

Гиалиновый хрящ имеет однородное межклеточное вещество и встречается на суставных хрящах, в трахее, бронхах, реберных хрящах. Из этого хряща состоят и все хрящевые модели костей в утробном периоде развития.

Эластический хрящ встречается в гортани и ушной раковине. В межклеточном веществе его располагаются эластические волокна.

Волокнистый хрящ находится между телами позвонков. В межклеточном веществе его размещаются пучками клейдающие волокна.

Костная ткань, из которой построен скелет, характеризуется очень большой твердостью и упругостью. Твердость костной ткани зависит от межклеточного вещества. Межклеточное вещество состоит из бесструктурного вещества, пропитанного солями кальция, и многочисленных тонких клейдающпх волоконец продольного и кругового направлений.

Костные клетки овальной формы, с многочисленными ветвистыми отростками, которыми они соединяются друг с другом.

Костные клетки располагаются рядами вокруг гаверсовых (сосудистых) каналов и отделяют гаверсовы пластинки межклеточного вещества в виде трубочек, вставленных друг в друга. Эти системы трубок получили название остеонов (рис. 6).

Кровь является разновидностью соединительной ткани. Ее межклеточное вещество представляет собой жидкость и называется п л а з м о й. В плазме находятся красные кровяные (безъядерные) клетки — эритроциты, белые кровяные клетки — лейкоциты и кровяные пластинки — тромбоциты (рис. 7).

Эритроциты содержат пигмент крови — гемоглобин, который имеет способность нестойко соединяться с кислородом и углекислым газом. Проходя по малому кругу кровообращения, кровь в легких обогащается кислородом.

Здесь гемоглобин эритроцитов присоединяет к себе кислород воздуха легких и отдает углекислый газ в выдыхаемый воздух. С кровью кислород разносится по всему телу (по большому кругу кровообращения). Лейкоциты обладают самостоятельным движением и могут фагоцитировать (пожирать) болезнетворных микробов. Тромбоциты способствуют свертыванию крови при повреждении сосудов.

Лимфа относится также к соединительной ткани. Она представляет собой прозрачную жидкость, которая состоит из плазмы, лейкоцитов и лимфоцитов (в ней нет красных кровяных,клеток).

Мускульная ткань. Состоит из веретенообразных или цилиндрических клеток, которые обладают свойством сокращаться, т. е. укорачиваться в своей длине. Тем самым приводятся в движение кости, к которым прикрепляются мускулы. Мускульная ткань развивается из среднего зародышевого листка и разделяется на гладкую, поперечнополосатую и сердечную.

Гладкая мускульная ткань состоит из веретенообразных, однородных, бледно-розовых клеток с одним ядром, расположенным в центре мускульной клетки (рис. 8). Сокращается гладкая мускульная ткань медленно н непроизвольно. Из этой ткани состоит мускульный слой стенок желудка, кишечника, мочевых и половых органов.

Поперечнополосатая мускульная ткань представляет собой скопление длинных цилиндрических поперечноисчерченных волокон с несколькими ядрами, расположенными по периферии волокна (рис. 9). Она сокращается быстро и произвольно. Из нее построена вся скелетная мускулатура.

Сердечная мускульная ткань устроена так же, как и поперечнополосатая, но ядра расположены в. центре волокна. Сокращается она непроизвольно и быстро. Из нее состоит мышца сердца.

Нервная ткань. Занимает особое место в организме животного. Из нервной ткани построена нервная система, через которую регулируется работа всех органов тела. При посредстве нервной ткани воспринимаются раздражения, поступающие изнутри организма, а также из внешней среды, окружающей животное.

Нервная ткань, как и всякая другая, построена из клеток, имеющих особую форму и функцию. В нервной клетке различают тело и ответвляющиеся от него отростки (рис. 10).

Отростки одной клетки неравнозначны. Короткие ветвящиеся отростки называются дендрит а м в; их количество может быть различно. По дендрнтам возбуждение передается к телу клетки. Кроме дендритов, от тела каждой клетки отходит один длинный отросток — н о й т р и т, по которому возбуждение передается от тела клетки.

Клетка со всеми отростками называется нейроном. По функциям различают нейроны чувствительные и двигательные.

Ч у в с т в и т е л ь н ы е нейроны воспринимают раздражение, в ответ на которое они приходят в возбужденное состояние и передают нервные импульсы (толчки) в спинной или головной мозг.

Двигательные нейроны передают ответные импульсы из головного или спинного мозга в исполнительные органы (мускулы или железы), которые и осуществляют ответную реакцию на раздражение.

источник

Помогите с зачетам пожалуйста )! Зачет. Кишечнополостные.

1. Кишечнополостные — это.
А. одноклеточные организмы
Б. двухслойные животные
В. трехслойные животные
2.Стрекательные клетки характерны.
А. только для гидры
Б. для всех кишечнополостных
В. только для актиний
3.Процесс почкования у гидры — это.
А.форма полового размножения
Б.рост гидры
В.форма бесполого размножения
4.Раздражимостью называют.
А.свойство организма отвечать на воздействие среды изменением своей деятельности
Б.действие раздражителя
В.захват добычи хищником
5. Животные с радиальной (лучевой) симметрией
А. активно передвигаются
Б. малоподвижные или сидячие
В. имеют правую и левую стороны
6. Важную роль при движении гидры играет
А. мускульное волоконце
Б. пищеварительная клетка
В. стрекательная нить
7. В половом процессе участвуют..
А.только женские гамет
Б.мужские и женские половые клетки
В.клетки внутреннего слоя
8.Оплодотворение — это процесс.
А.Почкования
Б.слияния мужской и женской гаме
В.регенерации
9.Гаметами называют…
А.клетки тела гидры
Б.мужские и женские половые клетки
В.только мужские половые клетки
10.При регенерации тела гидры новые нервные клетки образуются из.
А.промежуточных клеток
Б.кожно-мускульных клеток
В.стрекательных клеток
11. К колониальным кишечнополостным относятся:
А. гидры
Б. кораллы
В. актинии
В. Медуз
12.Среди перечисленных ниже групп животных найдите ту, в которую включены только кишечнополостные.
А. Обыкновенная амеба, инфузория-туфелька, медуза-аурелия.
Б. Пресноводная гидра, медуза-корнерот, красный коралл.
В. Дизентерийная амеба, лучевик, фораминифера.
Г. Лямблия, зеленая эвглена,трубач.
13.Клетки в теле кишечнополостных
А. расположены беспорядочно;
Б. образуют один слой;
В. образуют два слоя;
Г. располагаются в три слоя.
14 .По способу питания кишечнополостные животные — это:
А. хищники;
Б. паразиты;
В. растительноядные организмы;
Г. автотрофные организмы.

15.Пресноводная гидра имеет симметрию тела:
А. лучевую;
Б. двустороннюю;
В. на ранних стадиях развития лучевую, а во взрослом состоянии — двустороннюю;
Г. на ранних стадиях развития двустороннюю, а во взрослом состоянии — лучевую.
16.Какое кишечнополостное передвигается, резко выталкивая воду из-под колокола?
А. Пресноводная гидра.
Б. Актиния.
В. Медуза-корнерот.
Г. Красный коралл.
17.При дыхании кишечнополостные поглощают:
А. кислород, растворенный в воде;
Б. кислород воздуха;
В. углекислый газ воздуха;
Г. углекислый газ, растворенный в воде.

18. Покров тела гидры создают клетки:
А. кожно-мускульные;
Б. стрекательные;
В. нервные;
Г. промежуточные.

19.Вытягивание и сокращение тела гидры происходит благодаря:
А. изменению длины нервных клеток;
Б. выпрямлению стрекательной нити стрекательных клеток;
В. сокращению и расслаблению мускульных волоконец кожно-мускульных клеток;
Г. образованию ложноножек пищеварительно-мускульными клетками.

20.Стрекательные клетки располагаются в основном:
А. на подошве;
Б. в кишечной полости;
В. во внутреннем слое клеток;
Г. на щупальцах.

21. Гидра парализует добычу и врагов с помощью клеток:
А. промежуточных;
Б. стрекательных;
В. нервных;
Г. кожно-мускульных.

22.Какие клетки имеют звездчатую форму?
А. железистые;
Б. стрекательные;
В. пищеварительно-мускульные;
Г. нервные.

23.Возбуждение возникает в клетках:
А. пищеварительно-мускульных;
Б. стрекательных;
В. нервных;
Г. промежуточных.
24. К свободноплавающим морским кишечнополостным животным относится:
А. пресноводная гидра;
Б. медуза;
В. актинии;

25. Кишечнополостные:
А. ведут исключительно водный образ жизни;
Б. обитают в воде и почве;
В. обитают в наземно-воздушной среде.

источник

Понравилась статья? Поделить с друзьями: