чем отличаются липиды от других веществ клетки

Чем отличаются липиды от других веществ клетки

А. Классификация липидов

Липиды — большая группа веществ биологического происхождения, хорошо растворимых в органических растворителях, таких, как метанол, ацетон, хлороформ и бензол. В то же время эти вещества нерастворимы или мало растворимы в воде. Слабая растворимость связана с недостаточным содержанием в молекулах липидов атомов с поляризующейся электронной оболочкой, таких, как О, N, S или P (см. с. 14)

Липиды подразделяются на омыляемые и неомыляемые. Из огромного множества липидов здесь приведены лишь некоторые представители. Отдельные классы липидов обсуждаются в последующих разделах.

Омыляемые липиды. Структурные компоненты омыляемых липидов связаны сложноэфирной связью. Эти липиды легко гидролизуются в воде под действием щелочей или ферментов. Омыляемые липиды включают три группы веществ: сложные эфиры, фосфолипиды и гликолипиды. В группу сложных эфиров входят нейтральные жиры (глицерин+три жирные кислоты), воски (жирный спирт+жирная кислота) и эфиры стеринов (стерин+жирная кислота). Группа фосфолипидов включает фосфатидовые кислоты (глицерин+две жирные кислоты+фосфатная группа), фосфатиды (глицерин+две жирные кислоты+фосфатная группа+спирт) и сфинголипиды (сфингозин+жирная кислота+фосфатная группа+спирт). К группе гликолипидов относятся цереброзиды (сфингозин+жирная кислота+один углеводный остаток) и ганглиозиды (сфингозин+жирная кислота+несколько углеводных остатков, в том числе нейраминовая кислота).

Группа неомыляемых липидов включает предельные углеводороды и каротиноиды, а также спирты. В первую очередь это спирты с длинной алифатической цепью, циклические стерины (например, холестерин) и стероиды (эстрадиол, тестостерон и др.). Важнейшую группу липидов образуют жирные кислоты. К этой группе относятся также эйкозаноиды, которые можно рассматривать как производные жирных кислот (см. с. 376).

Б. Биологические функции липидов

1. Макроэргические вещества. Липиды — наиболее важный из всех питательных веществ источник энергии (см. рис. 349). В количественном отношении липиды — основной энергетический резерв организма. В основном жир содержится в клетках в виде жировых капель, которые служат метаболическим «топливом». Липиды окисляются в митохондриях до воды и диоксида углерода с одновременным образованием большого количества АТФ (ATP) (см. рис. 127).

2. Структурные блоки. Ряд липидов принимает участие в образовании клеточных мембран (см. рис. 217). Типичными мембранными липидами являются фосфолипиды, гликолипиды и холестерин. Следует отметить, что мембраны не содержат жиров.

3. Изолирующий материал. Жировые отложения в подкожной ткани и вокруг различных органов обладают высокими теплоизолирующими свойствами. Как основной компонент клеточных мембран липиды изолируют клетку от окружающей среды и за счет гидрофобных свойств обеспечивают формирование мембранных потенциалов (см. рис. 341).

4. Прочие функции липидов. Некоторые липиды выполняют в организме специальные функции Стероиды, эйкозаноиды и некоторые метаболиты фосфолипидов выполняют сигнальные функции. Они служат в качестве гормонов, медиаторов и вторичных переносчиков (мессенджеров) (см. с. 358), Отдельные липиды выполняют роль «якоря», удерживающего на мембране белки и другие соединения (см. с. 230). Некоторые липиды являются кофакторами, принимающими участие в ферментативных реакциях, например, в свертывании крови (см. с. 282) или в трансмембранном переносе электронов (см. с. 128). Светочувствительный каротиноид ретиналь играет центральную роль в процессе зрительного восприятия (см. рис. 347). Поскольку некоторые липиды не синтезируются в организме человека, они должны поступать с пищей в виде незаменимых жирных кислот и жирорастворимых витаминов (см. рис. 353).

Источник: www.chem.msu.su

Углеводы. Углеводы содержатся в животных клетках в небольшом количестве (около 1% от массы сухого вещества); в клетках печени и мышц их больше (до 5%). Растительные же клетки очень богаты углеводами: и высушенных листьях, семенах, плодах, клубнях картофеля их почти 70%.

Углеводы представляют собой сложные органические соединения, в их состав входят атомы углерода, кислорода и водорода.

Различают простые и сложные углеводы. Простые углеводы называют моносахаридами. Сложные углеводы представляют собой полимеры, в которых моносахариды играют роль мономеров. Из двух моносахаридов образуется дисахарид, из трех – трисахарид, из многих – полисахарид.

Все моносахариды бесцветные вещества, хорошо растворимые в воде. Почти все они обладают приятным сладким вкусом. Самые распространенные моносахариды – глюкоза, фруктоза, рибоза и дезоксирибоза. Сладкий вкус фруктов и ягод, а также меда зависит от содержания в них глюкозы и фруктозы. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.

Ди- и трисахариды, подобно моносахаридам, хорошо растворяются в воде, обладают сладким вкусом. С увеличением числа мономерных звеньев растворимость полисахаридов уменьшается, сладкий вкус исчезает.

Из дисахаридов важны свекловичный (или тростниковый) и молочный сахар, из полисахаридов широко распространены крахмал (у растений), гликоген (у животных), клетчатка (целлюлоза). Древесина – почти чистая целлюлоза. Мономерами этих полисахаридов является глюкоза.

Читайте также:  препарат разжижающий кровь и укрепляющие стенки сосудов

Биологическая роль углеводов. Углеводы играют роль источника энергии, необходимой для осуществления клеткой различных форм активности. Для деятельности клетки движения, секреции, биосинтеза, свечения и т. д. – необходима энергия. Сложные по структуре, богатые энергией, углеводы подвергаются в клетке глубокому расщеплению и в результате превращаются в простые, бедные энергией соединения – оксид углерода (IV) и воду (CO2 и H2O). В ходе этого процесса освобождается энергия. При расщеплении 1 г углевода освобождается 17,6 кДж.

Кроме энергетической, углеводы выполняют и строительную функцию. Например, из целлюлозы состоят стенки растительных клеток.

Липиды. Липиды содержатся во всех клетках животных и растений. Они входят в состав многих клеточных структур.

Липиды представляют собой органические вещества, нерастворимые в воде, но растворимые в бензине, эфире, ацетоне.

Из липидов самые распространенные и известные жиры. Содержание жира в клетках обычно невелико: 5-10% (от сухого вещества). Существуют, однако, клетки, в которых около 90% жира. У животных такие клетки находятся под кожей, в грудных железах, сальнике. Жир содержится в молоке всех млекопитающих. У некоторых растений большое количество жира сосредоточено в семенах и плодах, например у подсолнечника, конопли, грецкого ореха.

Кроме жиров в клетках присутствуют и другие липиды, например лецитин, холестерин. К липидам относятся некоторые витамины (A, D) и гормоны (например, половые).
Биологическое значение липидов велико и многообразно. От метим прежде всего их строительную функцию. Липиды гидрофобны. Тончайший слой этих веществ входит в состав клеточных мембран. Велико значение самого распространенного из липидов – жира – как источника энергии. Жиры способны окисляться в клетке до оксида углерода (IV) и воды. В ходе расщепления жира освобождается в два раза больше энергии, чем при расщеплении углеводов. Животные н растения откладывают жир в запас и расходуют его в процессе жизнедеятельности. Высокое содержание жира в семенах необходимо для обеспечения энергией проростка, пока он не перейдет к самостоятельному питанию.

Необходимо отметить далее значение жира как источника воды. Из 1 кг жира при его окислении образуется почти 1,1 кг воды. Это объясняет, каким образом некоторые животные способны обходиться довольно значительное время без воды. Верблюды, например, совершающие переход через безводную пустыню, могут не пить в течение 10-12 дней. Медведи, сурки и другие животные в спячке не пьют более двух месяцев. Необходимую для жизнедеятельности воду эти животные получают в результате окисления жира. Кроме структурной и энергетической функций, липиды выполняют защитные функции: жир обладает низкой теплопроводностью. Он откладывается под кожей, образуя у некоторых животных значительные скопления. Так, у кита толщина подкожного слоя жира достигает 1 м, что позволяет этому животному жить в холодной воде полярных морей.

1. Какие углеводы содержатся в клетках растений и животных? 2. В каких клетках содержание углеводов очень велико и какое это имеет значение дли организмов? 3. Охарактеризуйте биологическую роль углеводов. 4. Чем отличаются липиды от других веществ клетки? 5. Какова биологическая роль липидов?

Источник: blgy.ru

Органические вещества живых систем

Органические соединения составляют в среднем 20—30% массы клетки живого организма. К ним относятся биологические полимеры — белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул — гормонов, пигментов, АТФ и многие другие.

В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы — полисахариды, в животных — больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции.

Аминокислоты, азотистые основания, липиды, углеводы и т. д. поступают в клетку вместе с пищей или образуются внутри ее из предшественников. Они служат исходными продуктами для синтеза ряда полимеров, необходимых клетке.

Белки, как правило, являются мощными высокоспецифическими ферментами и регулируют обмен веществ клетки.

Нуклеиновые кислоты служат хранителями наследственной информации. Кроме того, нуклеиновые кислоты контролируют образование соответствующих белков-ферментов в нужном количестве и в нужное время.

Липиды — так называют жиры и жироподобные вещества (липоиды). Относящиеся сюда вещества характеризуются растворимостью в органических растворителях и нерастворимостью (относительной) в воде.

Различают растительные жиры, имеющие при комнатной температуре жидкую консистенцию, и животные — твердую.

Липиды входят в состав всех плазматических мембран. Они выполняют в клетке энергетическую роль, активно участвуют в процессах метаболизма и размножения клетки.

Читайте также:  снижена амплитуда т в переднеперегородочных отведениях что это

В состав углеводов входят углерод, водород и кислород. Различают следующие углеводы.

  • Моносахариды, или простые углеводы, которые в зависимости от содержания атомов углерода имеют названия триозы, пентозы, гексозы и т. д. Пентозы — рибоза и дезоксирибоза — входят в состав ДНК и РНК. Гексоза – глюкоза — служит основным источником энергии в клетке. Их эмпирическую формулу можно представить в виде Cn (H2O) n.
  • Полисахариды — полимеры, мономерами которых служат моносахариды гексозы. Наиболее известными из дисахаридов (два мономера) являются сахароза и лактоза. Важнейшими полисахаридами являются крахмал и гликоген, служащие запасными веществами клеток растений и животных, а также целлюлоза — важнейший структурный компонент растительных клеток.

Растения обладают большим разнообразием углеводов, чем животные, так как способны синтезировать их на свету в процессе фотосинтеза. Важнейшие функции углеводов в клетке: энергетическая, структурная и запасающая.

Энергетическая роль состоит в том, что углеводы служат источником энергии в растительных и животных клетках; структурная — клеточная стенка у растений почти полностью состоит из полисахарида целлюлозы; запасающая — крахмал служит запасным продуктом растений. Он накапливается в процессе фотосинтеза в вегетационный период и у ряда растений откладывается в клубнях, луковицах и т. д. В животных клетках эту роль выполняет гликоген, откладывающийся преимущественно в печени.

Среди органических веществ клетки белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки. В организме человека встречается около 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения, белки построены всего из 20 различных аминокислот.

Более детально остановимся на свойствах белков. Важнейшие из них денатурация и ренатурация.

Денатурация — это утрата белковой молекулой своей структурной организации. Денатурация может быть вызвана изменением температуры, обезвоживанием, облучением рентгеновскими лучами и другими воздействиями. В начале разрушается самая слабая структура — четвертичная, затем — третичная, вторичная и при наиболее жестких условиях — первичная.

Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается и структура белка. Такой процесс называется ренатурацией. Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например, антибиотиков, для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные вещества. У некоторых живых организмов обычная частичная обратная денатурация белков связана с их функциями (двигательной, сигнальной, каталитической и др.). Процесс разрушения первичной структуры белка всегда необратим и называется деструкцией .

Химические и физические свойства белков очень разнообразны: гидрофильные, гидрофобные; одни из них под действием факторов легко меняют свою структуру, другие — очень устойчивы. Белки делятся на простые — протеины, состоящие только из остатков аминокислот, и сложные — протеиды, в состав которых, кроме кислотных остатков аминокислот, входят и другие вещества небелковой природы (остатки фосфорной и нуклеиновой кислот, углеводов, липидов и др.).

Белки выполняют в организме много разнообразных функций: строительную (входят в состав различных структурных образований); защитную (специальные белки — антитела — способны связывать и обезвреживать микроорганизмы и чужеродные белки) и др. Кроме этого, белки участвуют в свертывании крови, предотвращая сильные кровотечения, выполняют регуляторную, сигнальную, двигательную, энергетическую, транспортную функции (перенесение некоторых веществ в организме).

Исключительно важное значение имеет каталитическая функция белков. Остановимся на этой функции более подробно. Термин «катализ» означает «развязывание», «освобождение». Вещества, относимые к катализаторам, ускоряют химические превращения, причем состав самих катализаторов после реакции остается таким же, каким был до реакции.

Все ферменты, выполняющие роль катализаторов, — вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз. Каталитическую активность фермента обусловливает не вся его молекула, а только небольшой ее участок — активный центр, действие которого очень специфично. В одной молекуле фермента может быть несколько активных центров.

Одни молекулы ферментов могут состоять только из белка (например, пепсин) — однокомпонентные, или простые; другие содержат два компонента: белок (апофермент) и небольшую органическую молекулу — кофермент. Установлено, что в качестве коферментов в клетке функционируют витамины. Если учесть, что ни одна реакция в клетке не может осуществляться без участия ферментов, становится очевидным то важнейшее значение, которое имеют витамины для нормальной жизнедеятельности клетки и всего организма. Отсутствие витаминов снижает активность тех ферментов, в состав которых они входят.

Читайте также:  норма пульс у детей 8 лет норма

Активность ферментов находится в прямой зависимости от действия целого ряда факторов: температуры, кислотности (pH среды), а также от концентрации молекул субстрата (вещества, на которое они действуют), самих ферментов и коферментов (витаминов и других веществ, входящих в состав коферментов).

Стимулировать или угнетать тот или иной ферментативный процесс может действие различных биологически активных веществ, как-то: гормоны, лекарственные препараты, стимуляторы роста растений, отравляющие вещества и др.

Витамины — биологически активные низкомолекулярные органические вещества — участвуют в обмене веществ и преобразовании энергии в большинстве случаев как компоненты ферментов.

Суточная потребность человека в витаминах составляет миллиграммы, и даже микрограммы. Известно более 20 различных витаминов.

Источником витаминов для человека являются продукты питания, в основном растительного происхождения, в некоторых случаях — и животного (витамин D, A). Некоторые витамины синтезируются в организме человека.

Недостаток витаминов вызывает заболевание — гиповитаминоз, полное их отсутствие — авитаминоз, а излишек — гипервитаминоз.

Гормоны — вещества, вырабатываемые железами внутренней секреции и некоторыми нервными клетками — нейрогормонами, Гормоны способны включаться в биохимические реакции, регулируя процессы метаболизма (обмена веществ и энергии).

Характерными особенностями гормонов являются:

  1. высокая биологическая активность;
  2. высокая специфичность (гормональные сигналы в «клетки-мишени»);
  3. дистанционность действия (перенос гормонов кровью на расстояние к клеткам-мишеням);
  4. относительно небольшое время существования в организме (несколько минут или часов).

Гормоноподобные вещества (нейрогормоны) синтезируются нервными окончаниями. Нервные клетки синтезируют еще нейромедиаторы — вещества, обеспечивающие передачу импульса клеткам. Есть гормоны липоидной природы — стероиды (половые гормоны). Координирует работу системы желез внутренней секреции гипоталамус.

Индивидуальный рост растений регулируется и координируется фитогормонами, действующими как ускорители роста клеток, их деления, (стимулируют деление камбия и др.).

У растений и у некоторых других организмов выявлена еще одна группа биологически активных веществ — алкалоиды. Эти органические соединения являются ядовитыми для человека и животных. Некоторые из них оказывают наркотические действие, так как содержат никотин, морфин и др.

Алкалоиды обнаружены приблизительно у 2500 видов покрытосеменных растений, преимущественно из семейств пасленовых, лилейных, маковых, конопляных и других. По мнению ряда ученых, алкалоиды у растений выполняют защитную функцию — приспособления к защите их от поедания животными. Алкалоид колхицин используют в медицине, а также для экспериментального мутагенеза.

Подобно белкам, нуклеиновые кислоты являются гетерополимерами. Их мономеры нуклеотиды, из которых слагаются молекулы нуклеиновых кислот, резко отличны от аминокислот. Существует 2 типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) и РНК (рибонуклеиновая кислота).

АТФ — аденозинтрифосфорная кислота, нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех молекул фосфорной кислоты.

Структура неустойчива, под влиянием ферментов переходит в АДФ – аденозиндифосфорную кислоту (отщепляется одна молекула фосфорной кислоты) с выделением 40 кДж энергии. АТФ — единый источник энергии для всех клеточных реакций. Ее превращение происходит по такой схеме:

Остановимся более подробно на значении нуклеиновых кислот, которые в клетке выполняют очень важные функции. Особенности химического строения нуклеиновых кислот обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этане индивидуального развития.

Поскольку большинство свойств в организме обусловлено белками, то понятно, что стабильность нуклеиновых кислот — важнейшее условие жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнеспособность. Изучение структуры нуклеиновых кислот, которую впервые установили американский биолог Уотсон и английский физик Крик, имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем — тканей и органов.

Исследованиями биохимиков установлено, что и биосинтез белков в живых организмах осуществляется под контролем нуклеиновых кислот.

Таким образом, нуклеиновые кислоты обеспечивают устойчивое сохранение наследственной информации и контролируют образование соответствующих им белков-ферментов, а белки-ферменты определяют основные особенности обмена веществ клетки. Все это очень важно для поддержания химической стабильности организмов, имеет решающее значение для существования жизни на Земле.

Источник: shkolo.ru

Понравилась статья? Поделить с друзьями: